SOFTWARE TAKES ' &
T COMM A N D #aseeagastnmrs o googd=saia=gns

. , " L] “w
| | IR L -

LEV MANOVICH ;

".‘v\u'

- -

w .

T

'l‘uir’. L ATk W i I i o R e A0 e Sl A o R ol Tl Y o w i S
Ll o) L el LY Ao o J " A8 S)
R s A '!l!ﬂ‘w« b » ' ™ ; B
I Al |- W5 L 1
SOl 1Y 3 ¢
e o Aw
\ -G W s -

A R
0 2 L R R N N A e A R R e A e
. 7 ol o |

R) e O O e b O A

B P v Y L1 P)Y il it O g . o (ol o e A e e d
ﬂl‘..---uwuir‘nh e z‘.(ﬂn‘»..l"llhw'\du-_.. " Nl e et e R e BB e R e b B e O A
- '

-
| ¥ l....mnnr-nrh. mm""""‘""-”" """."'"""--i-"c~ '- - R EENEEeEe -LA ALl LA L4 X0 0.7 -itiﬂ—
w N o : O > v m . ey d 44
- »] i'-" o o
Sl | ew D, A e z ' » . 4 e ‘ { ‘0 |]
1Y 1 W e P S s 'J! #Q"" .

“ . -r.

TR (.]

- L > &]
e Yk e "k P : 0 -

LB e w WG

AN
e L L

L

-ﬁ:u,

‘ e
L[~
[W L L AL L L
e L LT

il -
VOLUME S

M INTERNATIONAL TEXTS IN CRITICAL MEDIA AESTHETICS

BOER FOUNDING EDITOR: FRANCISCO J. RICARDO
| | - ’ 4 L] |

L

O-M. S Btk Y

Software

Ta
com

KES

mand

VOLUME #5

Founding Editor

Francisco J. Ricardo

Associate Editor

Jorgen Schafer

Editorial Board
Roberto Simanowski
Rita Raley

John Cayley

George Fifield

m
=
=

BLUU.\\SBLAF\Y

) . NEY
NEW \()Rlxtlw\l)()\t\}\\ DELHI SYD

To Hyunjoo
Library of Congress Cataloging-in-Publication Data

CONTENTS

\cknowledgments ix
Introduction 1
Understanding media 1
Software, or the engine of contemporary societies 6
What is software studies? 10
Cultural software 20
Media applications 24
From documents to performances 33
Why the history of cultural software does not exist 39

Summary of the book’s narrative 43

PART 1 Inventing media software s3

1 Alan Kay’s universal media machine 55
Appearance versus function 55
«Gimulation is the central notion of the Dynabook™ 64
The permanent extendibility 91

The computer as a metamedium 101

2 Understanding metamedia 107
The building blocks 107
Media-independent vs. media-specific techniques 113
Inside Photoshop 124
There is only software 147

.
. CONTENTS

PART 2 Hybridization and evolution 159
ybridization and evolution 15 ACKNOWLEDGMENTS

3 Hybridization 161

Hybridity vs. multimedia 161
The evolution of a computer metamedium 176
Hybridity: examples 184 |
Strategies of hybridization 195
4 Soft evolution 199 I'he ideas and arguments in this book are the result of the author’s
interactions with hundreds of people over many years: students in
B classes, presenters at conferences, colleagues over email. I especially
What is a “medium™? 204 want to thank everybody who responded to my poSts related to the
The metamedium or the monomedium? 225 ideas in this book on Twitter and Facebook as I was working on
The evolution of media species 233 it from 2007 to 2012. They asked provocative questions, told me
\ about relevant resources every time I asked, and encouraged me to
go forward by asking when the book will be published.
The following people ata number of institutions played particularly
key roles in the book’s evolution and publication, and I would like to
thank them individually (they are listed alphabetically by institution):

Algorithms and data structures 199

PART 3 Software in action 241

5 Media desi

! a design 243

After Effects and the invisible revolution 243 Bloomsbury Academic (the book publisher):

The aesthetics of hybridity 254 - Katie Gallof, Acquisitions Editor, Film and Media Studies.
; Jennifer Laing, Copy-editing.
Francisco J. Ricardo, Editor, International Texts in Critical
Media Aesthetics.
Clare Turner, Lead Designer.

Deep remixability 267

LE{_\"CI‘Q, transparency, compositing 277

After Effects interface: from “time-based” to
composition-based” 282

Software Studies Initiative (my lab established in 2007 at

3D space as a media design platform 289
Import/export: design workflow 296 Calit2):
Variable form 307 Staft:
Jeremy Douglass, Post-doctoral researcher, 2008-2012 (now

Assistant Professor, English Department, UCSB).

Amplification 323
Jay Chow, stuff member, 2012— (design, visualization, and

Conclusion 328 2
& . 329 programming).
) Ve > - 5
\(ftware, hardware, and social media 329
Media after sof S Collaborators:
software 335 ~ollaborators:
Software epistemology 337 Benjamin Bratton, Associate Professor, Visual Arts, UCSD.
’ Elisabeth Losh, Director of Academic Programs, Sixth

Index 343 College, UCSD.

X ACKNOWLEDGMENTS

California Institute for Telecommunication and Information
(Calit2):
Hector Bracho, media services.
Doug Ramsey, Director of Communications.
Ramesh Rao, Director, UCSD Division, Calit2.
Larry Smarr, Director, Calit2.

Center for Research in Computing and the Arts (CRCA):
Sheldon Brown, Director; Professor, Visual Arts, UCSD.
Lourdes Guardiano-Durkin, MSO.

Todd Margolis, Technical Director.

The Graduate Center, City University of New York (CUNY):
Matthew Gold, Associate Professor; Director, CUNY
Academic Commons.

Tanya Domi, Director of Media Relations.

Chase Robinson, Provost and Senior Vice-Chancellor.

Jane Trombley, Executive Director for Communication and
Marketing.

Software Studies Series (The MIT Press):
Matthew Fuller and Noah Wardrip-Fruin (series
co-editors).
Douglass Sery, Editor, New Media, Game Studies, Design.

Finally, I want to add special thanks to Larry Smarr, Director
of California Institute for Telecommunication and Information
who invited me to participate in the Institute activities, helped to
start my lab, and made it possible for me to work with the next
generation of computing technologies being invented at Calir2 and
the people inventing them.

Large parts of the book were written and edited in my favorite
cafes and hotel lobbies, and I would like to thank their staff:

The Standard, West Hollywood, California.
Mondrian, West Hollywood, California.

I’ Auberge Del Mar, California.

Del Mar Plaza, Del Mar, California.
Starbucks, Del Mar, California.

Sheraton Tribeca Hotel, New York.

{
ACKNOWLEDGMENTS X

j ; freadi anuscript at
Micki Kaufman did a great job of proofreading the manuscrij
ICK < < : .
the last moment and catching ln_an}'-11115t‘a|\e_s.
I'he book cover uses a part of a \'1suahzat|(m] o A
| tuber using Image] software and our custom p ug-ins.

s 2
£22.500 £ - ' ames per 3 seconds
ation consists of 22,500 trames sampled at 1 frames pe

i : P te g ay.
from a 62.5 hour video of the complete game play ———
[he book was written on Apple laptops (Mac 4

it W i e f ail and
MacBook Air) using Microsoft Word. 1 used iPhone for email and
A0 ¥y S

«ocial nerworks, and for occasional note taking. .
with the colleagues and the publis er,
Dropbox, Twitter, and l-acebook_.
ared by me and Jay Chow using
" analyzed in this book:

created by William

For communication
relied on Gmail, Google Docs,

The book illustrations were prepare
the same popular sofm';.\rc apphcanons
Photoshop, Illustrator, After Effects.

[am grateful to thousands of progra
developed the software p_roducts mentione
updating them with new features.

ammers and engineers who
d above, and continue

Introduction

Understanding media

[called my earlier book-length account of the new cultural
forms enabled by computerization The Language of New Media
(completed in 1999, it came out in 2001). By that time, the process
of adoption of software-based tools in all areas of professional
media production was almost complete, and “new media art” was
in its heroic and vibrant stage—offering many possibilities not yet
touched by commercial software and consumer electronics.

Ten years later, most media became “new media.” The devel-
opments of the 1990s have been disseminated to the hundreds of
millions of people who are writing blogs, uploading photos and
videos to media sharing sites, and use free media authoring and
editing software tools that ten years earlier would have cost tens of
thousands of dollars.

Thanks to the practices pioneered by Google, the world is now
used to running on web applications and services that have never
been officially completed but remain forever in Beta stage. Since
these applications and services run on the remote servers, they can
be updated anytime without consumers having to do anything—
and in fact, Google is updating its search algorithm code a few
times a day. Similarly, Facebook is also updating its code daily,
and sometimes it breaks. (Facebook’s motto expressed in posters
around its offices is “Move Fast and Break Things.”) Welcome to
the world of permanent change—the world that is now defined

2 SOFTWARE TAKES COMMAND

not by heavy industrial machines that change infrequently, but by
software that is always in flux.

Why should humanists, social scientists, media scholars, and
cultural critics care about software? Because outside of certain
cultural areas such as crafts and fine art, software has replaced a
diverse array of physical, mechanical, and electronic technologies
used before the twenty-first century to create, store, distribute and
access cultural artifacts. When you write a letter in Word (or its
open source alternative), you are using software. When you are
composing a blog post in Blogger or WordPress, you are using
software. When you tweet, post messages on Facebook, search
through billions of videos on YouTube, or read texts on Scribd,
you are using software (specifically, its category referred to as “web
applications™ or “webware”—software which is accessed via web
browsers and which resides on the servers).

And when you play a video game, explore an interactive instal-
lation in a museum, design a building, create special effects for a
feature film, design a website, use a mobile phone to read a movie
review or to view the actual movie, and carry out thousands of
other cultural activities, in practical terms, you are doing the same
thing—using software. Software has become our interface to the
world, to others, to our memory and our imagination—a universal
language through which the world speaks, and a universal engine
on which the world runs. What electricity and the combustion
engine were to the early twentieth century, software is to the early
twenty-first century.

This book is concerned with “media software”—programs
such as Word, PowerPoint, Photoshop, Illustrator, After Effects,
Final Cut, Firefox, Blogger, WordPress, Google Earth, Maya, and
3ds Max. These programs enable creation, publishing, sharing,
and remixing of images, moving image sequences, 3D designs,
texts, maps, and interactive elements, as well as various combina-
tions of these elements such as websites, interactive applications,
motion graphics, virtual globes, and so on. Media software also
includes web browsers such as Firefox and Chrome, email and chat
programs, news readers, and other types of software applications
whose primary focus is accessing media content (although they
sometimes also include some authoring and editing features.)

These software tools for creating, interacting with, and sharing
media represent a particular subset of application software

INTRODUCTION

3
Wil

A digital studio in Seoul, South Korea, 1/2006. Fl’)’ts sr)r_mﬁf)sz;;it:litlf::
rcsp;)nsible for the photography of all Samsu‘ngip omia .“-,; e
its ads worldwide. In the photos we see stmim.mz/f ac ;u_; ig,im o)
photos in Photoshop. Later these bigb»resglzmon retouc 79; g :;Z,t;ﬂs ol
inserted in the Samsung TV ad. thus assuring that the produc

clearly visible.

SOFTWARE TAKES COMMAND

including web applications) i i
ihat g E\w eb apphcatmns) in general. Given this, we may expect
all t fese tools inherit certain “traits” common to all contem
orary y >s this I :
5{()rki‘n;o0tr:xjrc.. D'()Ls this mean that regardless of whether you are
esigning a space, creatin ial eff for a f
g . 5 ating special effects for a feature
, designing a website, or making inf i
1 ing informa aphics, v
design process may follow a simi g i
o e = w a similar logic? Are there some struc
e desai;n\; Lahl?otlon ggaphlcs, graphic designs, websites
, buildings, and video games sh S1 e
. s games share since they are
. moi (;if w 1th1l _sofrw(;lre? More generally, how are interfaces and
media authoring softw: i
: are shaping the ¢ '
- . : ontemporary
S{;};it'lc; arlid visual languages of different media forms? i
in i i i i e
theorericalt ese guestl_cl)_?]s investigated in this book lies another
question. is question drives
: : rives the book v
and motivates my choi f 1 i
2 y choice of topics. Wh
ad m . y s. at happens he i
- i £ \ ppens to the idea
Simumte;dxu(rjn after pljeVlOU_S])’ media-specific tools have been
g d'ffan exteqded in software? Is it still meaningful to talk
; 5
mishe i erean?edlums at all? Or do we now find ourselves in a
w brave world of one singl 1 ‘ ‘
single monomedium i
- : f , or a metamedium (to
orIrO\L the tefm o.t the book’s key protagonist Alan Kay)? (
n short: What is “media” after software? .

Does “media” still exist?

Thi is : ic
i zhl;o;l:azisctl;:(;riﬁzai earc:o‘unt of m;dia Zoftware and its effects
decades, software has repiacte?imxelit . mff i Ov'er e
that emerged in the nineteenth and Srt\'Ot'er . .[eCh“OIOgieS
S | ventieth centuries. Today it
peopleqllixrt;g?: j}r:i tt:iitl;exg. for granted—and yet, surprisingly, few
e Y s l'ln(sr;)'ry and the theoretical ideas behind its
v I.)O bope red lhe y to kn_ow the names of Renaissance
e pﬁberﬁ?e t Cll'lse of !lne;lr perspective In western art
= languag; B gr;lrhy r\'&"entlet'h—cenrury inventors of modern
b Phc;ros.h a riffich, F.|§enstem, etc.)—but I bet you do not
s evep 'ccc)lrlnffs from, or Word, or any other media
s ot o th;egse ‘ ry] 1\ More 1mp9rtantly, you probably do
ol drme (30 ‘slwhe're invented in the first place.
m eutua istory of media software? What was
e motivation of the 'kcy people and research groups
y were directing—]. C. R. Licklider, Ivan Sutherland, Ted

INTRODUCTION &

Nelson, Douglas Engelbart, Alan Kay, Nicholas Negmponte——who
between 1960 and the late 1970s created most of the concepts
and practical techniques that underlie today’s media applications?
\« | discovered—and I hope you will share my original surprise,
in reading my analysis of the original texts by these people—they
were as much media theoreticians as computer engineers. | will
discuss their media theories and test them in view of the digital
media developments in the subsequent decades. As we will see,
the theoretical ideas of these people and their collaborators work
very well today, helping us to berter understand the contemporary
<ofrware we use to create, read, view, remix, and share.

Welcome, then, to the “secret history” of our software culture—
ecret not because it was deliberately hidden but because until
recently, excited by all the rapid transformations cultural comput-
crization was bringing about, we did not bother to examine its
origins. This book will try to convince you that such an exami-
nation is very much worth your time.

Its title pays homage to 2 seminal ™
Mechanization Takes Command: a Contribution to Anonymous
History (1947) by architectural historian and critic Sigfried Giedion.
in this work Giedion traces the development of mechanization in
industrial society across a number of domains, including systems of
hygiene and waste management, fashion, agricultural production,
and food system, with separate sections of the book devoted to
bread, meat, and refrigeration. Much more modest in scope, my
book presents episodes from the history of “softwarization” (my
neologism) of culture between 1960 and 2010, with a particular
attention to media sofrware—from the original ideas which led to
its development to its current ubiquity.

My investigation is situated within a broader intellectual
paradigm of «goftware studies.” From this perspective, this book’s
contribution is the analysis of the ideas that eventually led to media
software, and the effects of the adoption of this type of software on
contemporary media design and visual culture.

Note that the category media software is a subset of the
category application software; this category in its turn is a
subset of the category software‘—which [understand to include

entieth-century book

: hl(p://cn.\&‘ikipedia.org]\\ iki/List_of_software_categories (July 7, 2011}

SOFTWARE TAKES COMMAND

not only application software, system software, and computer
programming tools, but also social network services and social
media technologies.?

If we understand software in this extended sense, we can ask,
What does it mean to live in “software society”? And what does it

mean to be part of “software culture”? These are the questions the

next section will take up.

Software, or the engine of
contemporary societies

In the beginning of the 1990s, the most famous global brands were
the companies that were in the business of producing materials or
goods, or processing physical matter. Today, however, the lists of
best-recognized global brands are topped with the names such as
Google, Facebook, and Microsoft. (In fact, in 2007 Google became
number one in the world in terms of brand recognition.) And, at
least in the US, the most widely read newspapers and magazines—
New York Times, USA Today, Business Week, etc.—feature daily
news and stories about Facebook, Twitter, Apple, Google, and
other IT companies.

What about other media? When I was working on the first
draft of this book in 2008, 1 checked the business section of the
CNN website. Its landing page displayed market data for just ten
companies and indexes.” Although the list was changed daily, it
was always likely to include some of the same IT brands. Let us
take January 21, 2008 as an example. On that day the CNN list
contained the following companies and indexes: Google, Apple,
S&P 500 Index, Nasdaq Composite Index, Dow Jones Industrial

* Andreas Kaplan and Michael Haenlein define social media as “a group of Internet-
based applications that build on the ideological and technological foundations of
Web 2.0, which allows the creation and exchange of user-generated content.”
Andreas Kaplan and Michael Haenlein, “Users of the world, unite! The challenges
and opportunities of Social Media,” Business Horizons 53, no. 1 {January—February
2010}, pp. 59-68, htrp://dx.doi.org/10.1016/j.bushor.2009.09.003

htep://money.cnn.com (January 21, 2008).

7
INTRODUCTION

ic al ¥ s, Ford

Average, Cisco Systems, General Electric, General Motors, Ford,
crage, Wi).

Intel.! . ' 4 : A

['his list is very telling. The companies that Qeal “ﬁth pé\yjenl

: : ar i e : st: Generz:
poods and energy appear 1n the segond_part ot1 tl;_e 1s}t1CS€ (hre(c
I'lectric, General Motors, Ford. Right bztm: mCIL a tcrltrmh1 makc;

§ 2 1 . 7 e: >
o IT ¢ anies that provide hardwar
we see two IT companies : : iR
omputer chips while Cisco makes network eqmpment.l\ﬁ‘h:;h o
\ i : G : ; e? The firs
the two companies which are on top: (x()ogle avnd. App ::0 oo
« in the business of information (“(xooglcls mission 15‘ .:'hﬁ; e
the world’s information and make it universally aussg h();ws
Lseful™5), while the second is making consumer elutronilu.. ph He,
% 1 1 ' 3 't C ~ - \v‘ t e\v -
tablets, laptops, monitors, music players, ugi Bu;ggt}l;éthing ;lse
ing somethi lse. And apparently, this SO

both making something else. And a : MHCAMOEE S
<o crucial to the workings of US economy—and Lonsequmtl:\,
) ies st daily appear 1n
olobal world as well—that these companies a\n?ost Smlyl \p[_; -
business news. And the major Internet companies that also @ p%a\
o witte e e -
daily in news such as Google, Facebook, Twitter, Amazon, Y,
and Yahoo, are in the same bus!ness. A —

This “ i Jse” is software. Search €ngines,

This “something else” is softwa S
lation systems, mapping applications, blog tools, aug‘tjl.()r;] s “,
ek ‘ g atf hich allow
instant messaging clients, and, of course, platforms ;\\ \1;. 30“‘%

s y 4 . 5 .~ 4 . e s Tindows
people to write new software—iOS, Android, Facelioo , Wi 5 m“_:
f al ec 7, culture, socid 3
inux—are 1 -enter of the global economy, cu ,
Linux—are in the center O global i
\nd. increasingly, politics. And this “cultural Sf)ft\-\{irt —;L -
;n '1.sense that it is directly used by hundreds of mllhggls 0 p::(;; :
d : > of i / /is art o
ind that it carries “atoms” of culture—is only the visible part ot 3
Frw iverse.
much larger software uni ‘ ' s
In Software Society (2003), an unrealized book pr'opo,sal p
: ; y i y scribe - ance
together by me and Benjamin Bratton, we desgnbcdvtbc 1mp(3)rr -
ofhsoftwm"c and its relative invisibility in humanities and SOCI3

science research:

i f issile toward its target
Software controls the flight of a smart missile toﬁ& akl;d Igts ft\ ;,r
k g ing its ight. Software
i adj s course throughout the tlig
during war, adjusting its cou . ‘ E
cti s of Amazon, Gap,
.s and production lines o
runs the warehouses ar ' : e
Dell. and numerous other companies allowing them lto assgmlno
a j 7 3 st in
and dispatch material objects around the world, almost 1

R S 2

% IbiLi.

i (S er 23, 2012).
3 http-//www.Qo()QI:’.:(nn/abnut/compan_\/ {September 23, 201

8 SOFTWARE TAKES COMMAND

time. Software allows shops and supermarkets to automati-
cally restock their shelves, as well as automatically determine
which items should go on sale, for how much, and when and
where in the store. Software, of course, is what organizes the
Internet, routing email messages, delivering Web pages from
a server, switching network traffic, assigning IP addresses, and
rendering Web pages in a browser. The school and the hospital,
the military base and the scientific laboratory, the airport and
the city—all social, economic, and cultural systems of modern
society—run on software. Software is the invisible glue that ties
it all together. While various systems of modern society speak in
different languages and have different goals, they all share the
syntaxes of software: control statements “if then” and “while
do,” operators and data types (such as characters and floating
point numbers), data structures such as lists, and interface
conventions encompassing menus and dialog boxes.

If electricity and the combustion engine made industrial
society possible, software similarly enables global information
society. The “knowledge workers,” the “symbol analysts,” the
“creative industries,” and the “service industries”—none of
these key economic players of the information society can exist
without software.

Examples are data visualization software used by a scientist,
spreadsheet software used by a financial analyst, Web design
software used by a designer working for a transnational adver-
tising agency, or reservation software used by an airline. Software
is what also drives the process of globalization, allowing
companies to distribute management nodes, production facil-
ities, and storage and consumption outputs around the world.
Regardless of which new dimension of contemporary existence a
particular social theory of the last few decades has focused on—
information society, knowledge society, or network society—all
these new dimensions are enabled by software.

Paradoxically, while social scientists, philosophers, cultural
critics, and media and new media theorists seem by now to cover
all aspects of IT revolution, creating a number of new disciplines
such as cyberculture studies, Internet studies, game studies, new
media theory, digital culture, and digital humanities, the under-
lying engine which drives most of these subjects—software—has
received comparatively little attention.

INTRODUCTION

constantly interactin
{'ven today, ten years later, when people alnl'e umstgqth 1}:1;“65 ang
i i 1 ile p
' s of apps on their mo s an
with and updating dozen o it
ather computer devices, software as a theoretical iatég()f?gsi;)nals
invisible to most academics, artists, and fultura profes
interested in IT and its cultural and s_()cml effects. .
['here are some important eXceptons. O_ne is the H)p s
d related issues around copyright and' t &, ;
1 - ic disci s. We also
heen extensively discussed in many academic dxscnpltl)nes s
o a steadily growing number of trade books about S‘mfo%
Fod - Ao y . So
I'acebook, Amazon, eBay, Oracle, and other webﬁglanfsde\rdoped
‘hese books offer insightful discussions of ;he software i
e o 1 itical, © e, and episte-
se C anies he social, political, cognitive,
by these companies and the s , P o S
f 1 v : xample, see JO
ic - his software. (For a good €X
mological effects of t : .
sattelle, The Search: How Google and Its Rivals Rewrote the Ru
b : "
of Business and Transformed Our .Cultur;.) R o ades
ile we are i situation today w .
So while we are in a better : s E
‘ { { jety 1 se] that it is stl
: re Society in 2003, I fe t
our proposal for Softwa 2003 ity
mc'ufingful to quote it (the only additions are the referenc

. »y,
“social media” and “crowdsourcing):

movement an

¢ critical discussions of digital culture to ,the;dr}o.tloln,s,
- ¥ e > 2 >

“peer production,” cyber, ligital,

or “social media,” we

If we limi
of “open access, s
» « o »
rorks ew media,

“Internet,” “networks,” “n ! ; : i i
will never be able to get to what is behind ne\d\- re};:resfsntatll? :
‘ 1 i what 1t really 1

s ic edia and to understan : y
and communication m i

i . If we don’t address software 1tsell, 0

and what it does. If we dc ress \ iyt

i 7 5 E er than the
ay nly with its effects rat

danger of always dealing only B

: 0 -reen rather than
; at appears on a computer scre

causes: the output that app ; ; ”
i e these outputs.
: - cial cultures that produc rputs.

the programs and soc e i e
«Information Society,” “knowledge society, ‘ network so.u\e ¥

’ = » ~ y ~. ~

“social media,” “online collaboration, crowdsou'rcng —
: f co ary ex ce a
regardless of which new feature of contemporary t'emsten r(e

{ ° S ; features a

1 ~lvsis has focused on, all these new .
articular analysis has foc _ s
]e)nabled by software. It is time we focused on software itse

n Noah Wardrip-Fruin’s

simi senti is expressed 1
A similar sentiment P ey

Expressive Processing (2009) when he says In re

John Bartelle The Search: How Google and Its Rivals Rewrote the Rules of
¢ Jo! 3 % 7 ~

Business and Transformed Our Culture (Portfolio Trade, 2006).

10 SOFTWARE TAKES COMMAND

about digital literature: “almost all of these have focused on
what the machines of digital media look like from the outside:
their output... regardless of perspective, writings on digital media
almost all ignore something crucial: the actual processes that make
digital media work, the computational machines that make digital
media possible.”” My book discusses what I take to be the key part
of these “machines™ today (because it is the only part which most
users see and use directly): application software.

What is software studies?

This book aims to contribute to the developing intellectual
paradigm of “software studies.” What is software studies? Here
are a few definitions. The first comes from my The Language
of New Media, where, as far as [know, the terms “software
studies” and “software theory” appeared for the first time. I
wrote, “New media calls for a new stage in media theory whose
beginnings can be traced back to the revolutionary works of
Robert Innis and Marshall McLuhan of the 1950s. To under-
stand the logic of new media we need to turn to computer
science. It is there that we may expect to find the new terms,
categories, and operations that characterize media that became
programmable. From media studies, we move to something
which can be called software studies; from media theory—to
software theory.”

Reading this statement today, I feel some adjustments are in
order. It positions computer science as a kind of absolute truth,
a given which can explain to us how culture works in software
society. But computer science is itself part of culture. Therefore, I
think that Software Studies has to investigate the role of software
in contemporary culture, and the cultural and social forces that are
shaping the development of software itself.

The book that first comprehensively demonstrated the necessity
of the second approach was New Media Reader edited by Noah
Wardrip-Fruin and Nick Montfort (The MIT Press, 2003). The
publication of this groundbreaking anthology laid the framework

” Noah Wardrip-Fruin, Expressive Processing (Cambridge, MA: The MIT Press, 2009).

n
INTRODUCTION

f sof as 1 S the history
fur the historical study of software as it relates to

i .xplicitly use the term
wl culture. Although Reader did not c.\pléultlf_\ u} S
studies,” it di ' y el for how
X i ropose a new mo
woltware studies,” it did pre : louie abinw
hout software. By systematically juxtaposing important g
CAALR Y < -)). : : L : S E
Aoncers of cultural computing and artists andd\\r e
Iy same historical periods, New Media Rmd}e;r §n1()f S Lth oo
ch : is s. That is, often the s
- - . same larger epistemes. 1hat1is, ;
Ioath b longed to the sa g : e =
; ic : ently by artis
i - v articulated indepen y by
\lea was simultaneously 1 | 4 g
\entists who were inventing cultural computm%:l?r m: =t
- - and an 2
inthe ogy opens \,\;ith a story b\ J()l‘gC B()[g(..S (] 5 i . t " (n'“Si\'e
by V nﬁlzv ir Bush (1945) which both contain the idea (()1 a ma ‘t i
i ‘ - anize data and to captt
lyranching structure as a better way to organize data an P
. gs

human experience.

In February 2006 Matthew Fuller who had ;g\r’zq’il\i ;;’le:)ll;};f;
| pioneering book on software as cﬁu‘ltgre [' c(.iz t;]e sii=
¢ssays On the culture of software, 2003) organized i e

ware Studies Workshop at Piet Zwart Institute 0 ¥ .
il rkshop, Fuller wrote, «Sofrware is often a blin

opronlacm tational and networked

spot in the thcorimt}i(m and stud‘:d(:t:l:::imsp;zﬂ e s
digital media. It is the very grounds &= =" e
<ense. all intellectual work is now software StllL" i P
i i . 4 irs context, but there are very Iew piac

lwlﬁm):‘r‘:‘j et;;tss[r:;z?ﬁli Iil‘;:]u:tt?s :;\T t:r::teriality. of software is studied
v : - . . »g
~cept as a matter of engmneerng. - _ el o
‘\Llcit()llxip‘lletcl'\' agree with Fuuer that, “all ‘mtflz,“ftilril t;:;)irrl:tells_
now ‘software study.”” Yet it WQ\ takg some time 760t)q il
lectuals will realize it. To help bring this ghange},\ 1)n§._ .tu(’,m’ ol
‘uller. Noah Wardrip-Fruin and 1 established i s oftwe k;‘ i
v i- .ries at MIT Press. The already published }mo s ;n :
L’O9) é:rrsc‘sgo‘ftu‘ure Studies: A Lexi.('(m ed}tcd by l-ul‘ler ',‘.-()l_)M}
Expr jve Processing: Digital Fictions, Computer (.amci. »Jm»_
;fﬁ:’;i;l Studies .by Wardrip-Fruin (.?.(_)Q‘)'), P?ﬁm"(”:g{il)\ z;t;:;z/
Software and Memory by Wendy F—_Im I‘\‘voné ‘\:'[u‘;:m_. - ,Mamn
Space: Software and Everyday L~1fe by Ro IL. _\(:<,/,€ti(. i
i)odgc (2011), and Speaking 90(19: (,‘lel‘n_g](;.\-lém-(.70]2}. e
Political Expression by Geoft Cox an‘d :}y_ X ‘:hérs C;mhlished
2011, Fuller together with a number of UK researc

I

X' B wart.w a.hro.niT r/Semm: rs2/s Studwo kshop (Janu 21 008
P ars2/ sno l] ary >)
wp f/pzwart. dka.hro.n /mdr/Semmars=/so T AWC T

12 SOFTWARE TAKES COMMAND

Computational Culture, an open-access peer-reviewed journal that
provides a platform for more publications and discussions.

In addition to this series, I am also happy to see a growing
number of other titles written from the perspectives of platform
studies, digital humanities, cyberculture, internet studies, and
game studies. Many of these books contain important insights
and discussions which help us better understand the roles of
software. Rather than trying to list all of them, I will only
provide a few examples of works which exemplify the first two
of these perspectives (more will be in press by the time you are
reading this). Platform studies: Nick Montfort and Ian Bogost’s
Racing the Beam: The Atari Video Computer System (2009),
Jimmy Mabher’s The Future Was Here: The Commodore Amiga
(2012). Digital Humanities: Mechanisms: New Media and the
Forensic Imagination (Matthew G. Kirschenbaum, 2008), The
Philosophy of Software: Code and Mediation in the Digital Age
(David Berry, 2011), Reading Machines: Toward an Algorithmic
Criticism (Stephen Ramsay, 2011), How We Think: Digital Media
and Contemporary Technogenesis (Katherine Hayles, 2012).° Also
highly relevant is the first book in what may become a new area
of “format studies™: MP3: The Meaning of a Format (Jonathan
Sterne, 2012).1°

Another set of works which are relevant to understanding the
roles and functioning of software systems comes from people who
were trained in computer science but are also equally at home in
cultural theory, philosophy, digital art, or other humanistic fields:
Phoebe Sengers, Warren Sack, Fox Harrell, Michael Mateas, Paul
Dourish, and Phil Agre.

Yet another relevant category of books comprises the historical
studies of important labs and research groups central to the
development of modern software, other key parts of information
technology such as the internet, and professional practices of

? Nick Montfort and Ian Bogost, Racing the Beam: The Atari Video Computer
System (The MIT Press, 2009); Jimmy Maher, The Future Was Here: The
Commodore Amiga (The MIT Press, 2012); David Berry, The Philosophy of
Software: Code and Mediation in the Digital Age (Palgrave Macmillan, 2011);
Stephen Ramsay, Reading Machines: Toward an Algorithmic Criticism (University
of Illinois Press, 2011), Katherine Hayles, How We Think: Digital Media and
Contemporary Technogenesis (University of Chicago Press, 2012).

'* Jonathan Sterne, MP3: The Meaning of a Format (Duke University Press, 2012).

13
INTRODUCTION

St les of these
wltware engineering such as user testing. The examp

i s Lyon’s
works listed chronologically are Kan}e Hgfn_er. andOIvfla’}t’iewI e
» Up Late: The Origins
Where Wizards Stay Up he R ostim
(1998), Michael Hiltzik’s Dealers of Lxgbtmng_. Xé'rox I;?”_KC“V’S
the Dawn of the Computer Age (2(;00[)-i .Zlar;)ng ;r;;;stow Of{he
] ions to Sonic the Hedgenog:)
Vvom Airline Reservations . . .
han Ensmenger’s 17¢
itware Industry (2004), and Nat S
;f i ‘lr'(tke Over: Computers, Programmers, and the Politics of
Ovs ¢ =
lechnical Expertise (2010)." S S i
My all-time favorite book, however, rerpaﬁns (‘)1(o e
plisk ¢ ingold in 1985, rightatther ‘
\ublished by Howard Rheingo i e
ll“ml(:ticqtion of computers and software starts, ed\cntualldy :f]z:: ke%
o e - tuitv. This book is organized aroun 3
o their current ubiquity. T nized A
l : i ‘L“ that computers and software are not just :leghno!g‘zé,}differ
SIE : ; g
I nl?cr the new medium in which we can think amh ITariles i
“mlv Similar understanding was shared by :iil\tth ee Coempmational
(Y- . 5 : ; ’ te
ook w with their collaborators, inven ; :
|”Ul\l v\flz)(r)’thoughts”—] C. R. Licklider, Ted Nelson, D(()};glda:f
B : i J . (Today
|[|(\)rclbart Bob Taylor, Alan Kay, Nnchqlas I_Jegropon.tlcl: hepd
n 1!:1\' aca’demics in humanities and social sciences st1t0 i
N > ' i
> this si : tal idea. They continu]
,rasp this simple but fundamental x s o
t‘:)tl:\I:are as being strictly the domain of §he Acgdﬁmxc (,lo'n:ﬁ)ere ti
Department in their universities—something Whlch is ()Sh)lm i
help them become more efficient, as op][l)o;sed to the me
i creativity ; dwells. _
intellectual creativity now) -
hur']f‘fx?s short sketch of the intellectual landscape a.roum}i1 :O:(Te =
i i i omplete if I do not mention the roic
studies will be very incomp : : D =
;trtéists in pioneering the cultural discussions of softw arde.tljecg!; veloi
; i d writers starte
p 2000, a number of artists an tarted ¢ e
a}i;ounrictice of software art which included exhlblt.l()ns,ffesr\v‘; ;t
t :bﬁshing books, and organizing online repositories (:\l:(:nder
E’vorks The key ﬁgures in these developments were Amy Ale> :

7 stay U . The Origins Of
‘ R vhere Wizards Stay Up Late: T _ :
11 Kati and Matthew Lyon, Where s i
,‘ e Hai??gi::cm & Schuster, 1998); Michael A. Hiltzik, Qe.zlﬁrs;é{)éf’(f{Lﬁ{n
\r(he I:tle’:g(‘.and the Dawn of the Computer Age (Hﬁipcﬁu‘;“‘;’:;]—A' H;<;or\' o
SIS SR as : - rpations to Sonic the Hedgehog: A f1isIOT)

& oll-Kelly, From Airline Reservations 10 . > , Comebeter
Cam‘pbdl']\:I:uim!n' (The MIT Press, 2004); Nathan L. Ef‘srfft_‘fgtl'}v T_b_;[I;)wc[zl;rrise
o 5"_?’2‘”0 er Ejolmxmters Programmers, and the Politics of Technical &

Boys Take Qver: s

{The MIT Press, 2010).

14 SOFTWARE TAKES COMMAND

Inke Arns, Adrian Ward, Geoff Cox, Florian Cramer, Matthew
Fuller, Olga Goriunova, Alex McLean, Alessandro Ludovico, Pit
Schultz, and Alexei Shulgin. In 2002 Christiane Paul organized
CODeDOC—an exhibition of artistic code—at The Whitney
Museum of American Art;2 in 2003, the major festival of digital
art Ars Electronica choose “Code” as its topic; and since 2001,
the transmediale festival has included “artistic software” as one
of its categories, and devoted a significant space to it in the festi-
val’s symposiums. Some of the software art projects pioneered the
examination of code as the new cultural and social artifact: others
offered critical commentary on commercial software practices. For
example, Adrian Ward created an ironic Auto-Illustrator—“an
experimental, semi-autonomous, generative software artwork and
a fully functional vector graphic design application to sit alongside
your existing professional graphic design utilities.”
Recognizing that the bits of software studies exist across many

books and art projects, Fuller writes in the Foreword to The MIT
Press Software Studies book series:

Software is deeply woven into contemporary life—economically,
culturally, creatively, politically—in manners both obvious and
nearly invisible. Yet while much is written about how software
is used, and the activities that it supports and shapes, thinking
about software itself has remained largely technical for much of its
history. Increasingly, however, artists, scientists, engineers, hackers,
designers, and scholars in the humanities and social sciences are
finding that for the questions they face, and the things they need to
build, an expanded understanding of software is necessary. For such
understanding they can call upon a strand of texts in the history of
computing and new media, they can take part in the rich implicit
culture of software, and they also can take part in the development
of an emerging, fundamentally transdisciplinary, computational
literacy. These provide the foundation for Software Studies.

Indeed, a number of earlier works by the leading media theorists
of our times—Friedrich A. Kittler, Peter Weibel, Katherine Hayles,

2 http://artport.whitney.org/commissions/codedoc/

" Matthew Fuller, Software Studies series introduction, http://mitpress.mit.edu/
catalog/browse/browse.asp>btype=6&cserid=179 (July 14, 2011).

1%
INTRODUCTION

i ; r way, and others—can
| awrence Lessig, Manual Castells, Alex Galloway

[== o
if i rare studies.
(a0 be retroactively identified as belonging to Eotml;leadv sl
‘l herefore, I strongly believe that this paradlgn;_ va; a L ‘;mil ;
' § i o - ,- ~ ' - 2
{0 o number of years but it has not been explicitly na
" .)

:ars ago. ' r
l‘“I H|“\ iitroduction to a 2006 Rotterdam workshop Fulle
n 1S

ject of ; and
pointed out that “software ca(;x Ck;e §cenﬂ;1;)z;3 f:ée:}tl:;ztl:g;i;es’
i arca of practice for art and desigh . s
or cultural studies and science and tec nosog‘” B
lm (:ncrging reflexive strand of corr_lpurerhsuen;c:{ uilix:{c.uee qOhieCt
i .nh'mi: discipline can be defined either ﬂt rc;)t_lg' t;O‘l o g
of study, a new research method, or a corlrll l’r-l‘ltqtcmemi i
how shall we think of softwgre studies? l-u'hz?r; g};mﬂd i
that “software” is a new ().blc?ct of studi.wh 1‘c:2m~ v prs
the agenda of existing dlsc1pl‘mes.and w‘ ‘1c .
\ready existing methods—for instance, ac
social semiotics, or media archacology.‘ - B
There are good reasons for supporting this pe prmmempomm
of software as a layer that permeates all areas 0{ Comemporar‘v
cocieties. Therefore, if we want to understand 3

1 i] ion
ontrol, communication, representation, simulation,

.chniques of ¢ n, er ‘ i
‘“hl i decision-making, memory, vision, writing, and intera]
analysis, de - g 3

analysis cannot be complete until we consider tbis Sf)ttwarc:

e 3“\‘;‘;‘“5}] means that all disciplines which deal with cgpﬁem
Ip]<:1'e;r» sc;ziety and culturc——ar;hitccture,d.deslgr:i,ie :rzci:?:;:]é
s‘ocio]'ogy, political science, art hlstory.dmc 1:{Cs()3nt f(,)r Gt
technology studies, and all others—need to ach - i
sofrware and its effects in whqtever suby.ect‘s :t e: 5 Stﬁdics b
‘ At the same time, the existmg_work in ?of w'a ey neea
demonstrates that if we are to focus on so t\\ ?ri‘,h;t (;nc dciis
new methodologies. That is, it helps to plrlacitu.;:]g o
about. It is not accidental that all the‘mte ec‘tu‘ s i e
;\'stematically written about software’s mle}? 11'1 5([):;,6“; s
i{ave either programmed thcmse!ves. or da\‘e. o ieaching
cultural projects and practices which mqu e]wr F‘i;ian Sk

frware—for instance, lan Bogost, Jay Bo tftr, g i
i’?’cnd\' Chun, Matthew Fuller, Alexander Galloway,

rondy , 1

See Mi hael Truscello, review ot B(‘I\llld the Blip: Essays of the ulture of
N 1 usce 1 P S G
C ¢ N

riti Spring . 182-7.
Software,” Cultural Critique 63, Spring 2006, pp

16 SOFTWARE TAKES COMMAND

Hayles, Matthew Kirschenbaum, Geert Lovink, Peter Lunenfeld,
Adrian Mackenzie, Paul D. Miller, William J. Mitchell, Nick
Montfort, Janet Murray, Katie Salen, Bruce Sterling, Noah Wardrip-
Fruin, and Eric Zimmerman. In contrast, the scholars without
this technical experience or involvement—for example, Manual
Castells, Bruno Latour, Paul Virilio, and Siegfried Zielinski—have
not included discussions of software in their otherwise theoreti-
cally precise and highly influential accounts of modern media and
technology.

In the 2000s, the number of students in media art, design, archi-
tecture, and humanities who use programming or scripting in their
work has grown substantially—at least in comparison with 1999
when I first mentioned “software studies™ in The Language of New
Media. Outside of culture and academic industries, many more
people today are also writing software. To a significant extent, this
is the result of new programming and scripting languages such as
ActionScript, PHP, Perl, Python, and Processing. Another important
factor is the publication of APIs by all major Web 2.0 companies
in the middle of the 2000s. (API, or Application Programming
Interface, is a code that allows other computer programs to
access services offered by an application. For instance, people can
use Google Maps API to embed full Google Maps on their own
websites.) These programming and scripting languages and APIs
did not necessarily make programming easier. Rather, they made
it much more efficient. For instance, since a young designer can
create an interesting work with only couple of dozen lines of code
written in Processing versus writing a really long Java program,
s/he is much more likely to take up programming. Similarly, if only

a few lines in JavaScript allows you to integrate all the functionality
offered by Google Maps into your site, this is a great motivation
for beginning to work with JavaScript. Yet another reason for
more people writing software today is the emergence of a massive
mobile apps marketplace that, unlike the desktop market, is not
dominated by a few large companies. According to informal
reports in the beginning of 2012, one million programmers were
creating apps for the iOS platform (iPad and iPhone) alone, and
another one million were doing this for the Android platform.

In his 2006 article covering new technologies that allow people
with very little or no programming experience to create new
custom software (such as Ning), Martin LaMonica wrote about a

INTRODUCTION 17

future possibility of “a long ta_il for apps.”" :x 15\\' }'C‘d(l)'b‘ lqtcr.“t:rlz
s exactly what happened. In September ;()1;. 0(?.00 Vfg‘ps .
\vailable on Apple App Store,® and over 600,000 Android apps

@lc L\'.I—
("‘;:;‘l:hzl};;rtidc called “A Surge in Learnir}g [llC-Lilt:lgliagC ()j
he Internet” (March 27, 2012), the New &or.k Tx'mes {gpc)rtg
that. “The market for night classes and online mstru;nop mﬁ
programming and Web construction, as well as »for 1Pl}(.)ne app;
llml" teach, is booming.” The article quoted Zach ‘7.5}111115,‘ (:15
of the founders of Codecademy (a web school 'th‘f Fea;d(le
programming though interactive lessons) who explame. (Y)ljlt' ((j) di 4
reasons for this growing interest in !carnmg programm}x‘ng, (?n -
Jdesign: “People have a genuine desire to understgpd t}e) \v\‘ or Lt =
now live in. They do not just want to use the Web; they wan

.rstand how it works.”"® '
“mll;rss[;ite of these impressive developments, the glp :ce)zx:et;r;
people who can program and who cannot remams—l:xsw}m .
gap berween professional programmers and Peopl% il]thc
took one or two short programming classels.. Clear y, today =
consumer technologies for capturing a_n.d editing media are m‘md
casier to use than even the most tnendly‘ programm{ng' i;\lis
scripting languages. But it _doc.s not necessarily have tho stasymdi(,)
wav. Think, for instance, of what it took to set up a p.' (1tro s
and take photographs in the 1850s versus sm}ply pr)es(,s)l(x;:, (llza;.l,\
button on a digital camera or a rnobnlg phone in thg 2000s. s .i no;
we are very far from such simplicity 1n _progrmnmmg. lzut g;ome
sce any logical reasons why programming cannot one day bec
- < 7 easy. i
ull]:(ilr} ;(::\ the number of people w:ho can script an:l progra_?:
keeps increasing. Although we are far from alfrlucy lp]ng I;a(:re
for software, software development 1S gradually T.t.,etm s; e
democratized. It is, therefore, the right moment to start thinking

F W es,” CNET News : 31,2006,
Martin LaMonica, “The do-it-yourself Web emerges, CNET Neuw i‘illlly(j('lgqg(,;
ht{p:/';'\\'\\'\V.nc“s.cnmffl\c-d(ril—}‘oursc‘fA\ch—:mcrng/Z 100-1032_3-6 3.
html » g i
6 hrtp'//www.m0bilv:srnusncs.L‘omlmobllc—smusms (July 30, 2012).
7 : - s/ (July 30, 2012).
7 hetp:/! IA\.gnoglc.u»m/ahout/appm (July earaos
. l"n}nqi\‘(')rrh m. “A Surge in Learning the Language of the Internet, Ne ;L. 0
Tkt g March 27, 2012 h(rp://\vw\\.nvnmcﬁ.com/lo]l/‘l]%/’l?s/[echnnlog) for-an
imes, Mz 27, 2012, y

rdae-on-the-imemet-compntcr-codc-gmm-.rmllm\ ing.htm

19

The complete code for
ymplete code for tree_recursion, a Processing sketch by Mitchell

$?

\\lw > y 20 7/
itelaw, 2011, http://www.openprocessing.org/sketch/8
Tree variations generated by tree_recursion code.

20 SOFTWARE TAKES COMMAND

theoretically about how software is shaping our culture, and how

it is shaped by culture in its turn. The time for “software studies”
has arrived.

Cultural software

German media and literary theorist Friedrich Kittler wrote that
students today should know at least two software languages:
only “then they’ll be able to say something about what “culture’
is at the moment.™" Kittler himself programmed in an assembler
language—which probably determined his distrust of Graphical
User Interfaces and modern software applications that use these
interfaces. In a classical modernist move, Kittler argued that we
need to focus on the “essence” of the computer—which for Kittler
meant its mathematical and logical foundations and its early
history characterized by tools such as assembler languages.

This book is determined by my own history of engagement with
computers as a programmer, computer animator and designer,
media artist, and as a teacher. This involvement started in the early
1980s, which was the decade of procedural programming (Pascal),
rather than assembly programming. It was also the decade that
saw the introduction of PCs, the emergence and popularization
of desktop publishing, and the use of hypertext by some literary
scholars. In fact, I came to NYC from Moscow in 1981, which
was the year IBM introduced their first PC. My first experience
with computer graphics was in 1983—4 on Apple Ile. In 1984 1
saw a Graphical User Interface in its first successful commercial
implementation on an Apple Macintosh. The same year I got a job
at Digital Effects, one of the first computer animation companies in
the world, where I learned how to program 3D computer models
and animations. In 1986 I was writing computer programs that
automatically processed photographs to make them look like
paintings. In January 1987 Adobe Systems shipped Illustrator,

** Friedrich Kittler, “Technologies of Writing/Rewriting Technology,” Auseinander 1,
no. 3 (Berlin, 1995), quoted in Michael Truscello, “The Birth of Sofrware Studies:
Lev Manovich and Digital Materialism,” Film-Philosophy 7, no. 55 (December
2003), hrep://www.film-philosophy.com/vol 7-2003/n5 Struscello.html

INTRODUCTION 2

i : y ; the release
{ollowed by Photoshop in 1989. The same yea_}ﬁg\& tiﬂe S
ol The Abyss, directed by James Cameron. , 1; r;llcter i
proneering CGI to create the first complex vu’tuad? a fted .an the,
Iyy Christmas of 1990, Tim Berners-Lee had already crea ——
’ il 3 M M - T T S e
mponents of the World Wide Web as it exists today: a we A
co S
s, and a W wser. _ ‘
web pages, and a web bro : P
In short, during one decade the computer moy ed_ tzo(r)r; cumlgre
culturally invisible technology to being the n‘ewLenvgml‘ i
While the progress in hardware and Moore’s law p a;he v
- > ;as a
i is dev even more crucial wa
roles in this development, ! e .
: 1 Sraphical User Interface (GUIL) a
of software with a Graphical Us face (GU! i s
non-technical users, word processing, gppllcatlor}s for ddCditing,
painting, 3D modeling, animation, music compqsmgd.an thorin;’
information management, hypermedia ani.n1u:§;cr’nel(;a\‘;it(lje \Vebb)
i and global networking (Wor
(HyperCard, Director), an e
. f i C : /as set for the ne>
(ith easy-to-us 7 n place, the stage W : .
With easy-to-use software 1 : : i
lecade of the 1990s when most culture mdustrles—graphlg de;iin'
e i 51 ‘ ima
\rehitecture, product design, space demgn,dﬁlnimakmg, anemem ,
; ic, hi cati > manag —
i i E her education, and culture
media design, music, hig S .
5 /4 rst learne
7 rare tools. Thus, althoug
oradually adapted softwa _ . s e
P i /as 1 school in Moscow, my
> 1975 when I was in high ' '
90 ; watching how during the
i studi shaped by watching hc
on software studies has been . . ' i
1980s GUI-based software quickly put the computer in the
of culture. ; : i
If software is indeed the contemporary _equwaleptl O;fects
S Jombeege o B
combustion engine and electricity 1n terms of its so;n;e . t(;
f - into account. B
y ; eeds to be taken into acc
every type of software n : . e
consider not only “visible” software used by consumers bu:1tem
"orév" software, which runs all systems and pr()cessesl in con .
i 1 7 ince I do not have personal experie
;'S tv. However, since 1 do ‘ 5
o fr s i i ation software, an
iti istics re. industrial automa , 2
writing logistics softwa g o R e
i 7 ; I will be not be writing about ¢
other “grey” software, i T
: 1 ic are whic
concern 1 a particular subset of softwz
My concern is with a pa o b
' fessi i & al software.
i 4 ssional life. T call it cultur
and taught in my profes I e P
Whil{: the term “cultural software” was Pprev I'Ol;f[l) u’s &
metaphorically (see J. M. Balkin, Cultural Software: A)ef)?t e
Ideology 20(53), [am going to use it literally to reflclr to ce .z;te
5 : i y ally associz
types of software that support actions l;;ed rgorm;t}aisian -
. 1 o zr “v.
ith « - cultural actions enabled by so .
with “culture.” These cu : _ i .
divided into a number of categories (of course we should keep

22 SOFTWARE TAKES COMMAND
Preferences... ﬁ
Display: {Separation Setup...) -

X Colored separations [cancet |
I use system palette Column Size:
(3 Uideo LUT animation :

Width:

Clipboard Export: EI @
O Bisabled sutter:[1__ | [ipicas)]
O 1 bit/pinel
O 2 bits/pinel interpolation Method:

9 4 bits/pixel O Nearest Neighbor
O 8 bits/pinel O Bilinear
@® 8 bits/pinel, System Paiette @® Bicubic

O 16 bits/pixel
O 32 bits/pinel

["& File £dit Mode image Select Window

I8

30

Cliels|u | /(o]
S [[Ny | B[]0/

(==

1

@
0
0

Adobe Photoshop, Macintosh version 1.0.7, 1990. Top: preferences
window. Bottom: workspace. :

INTRODUCTION 23

mind that this is just one possible specific categorization system
among many).

1 Creating cultural artifacts and interactive services which
contain representations, ideas, beliefs, and aesthetic values
(for instance, editing a music video, designing a package for
a product, designing a website or an app).

2 Accessing, appending, sharing, and remixing such artifacts
(or their parts) online (for instance, reading newspaper on
the web, watching YouTube video, adding comments to a
blog post).

3 Creating and sharing information and knowledge online
(for instance, editing a Wikipedia article, adding places in
Google Earth, including a link in a tweet).

4 Communicating with other people using email, instant
message, voice-over IP, online text and video chat, social
networking features such as wall postings, pokes, events,
photo tags, notes, places, etc.

5 Engaging in interactive cultural experiences (for instance,
playing a computer game).

6 Participating in the online information ecology by
expressing preferences and adding metadata (for instance,
automatically generating new information for Google
Search whenever you use this service; clicking the “+1”
button on Google+ or the “Like” button on Facebook;
using the “retweet” function on Twitter).

7 Developing software tools and services that support all
these activities (for instance, programming a library for
Processing that enables sending and receiving data over the
Internet;? writing a new plugin for Photoshop, creating a
new theme for WordPress).

Technically, this software may be implemented in a variety of ways.
Popular implementations (referred to in the computer industry as
«software architecture”) include stand-alone applications that run
on the user’s computing device, distributed applications (a client

28 hrtp://wmwv.processing.org/refcrence/librarics/ {July 7, 2011).

24 SOFTWARE TAKES COMMAND

running on the user’s device communicates with software on the
server), and peer-to-peer networks (each computer becomes both
a client and a server). If all this sounds completely unfamiliar, do
not worry: all you need to understand is that “cultural software”
as I will use this term covers a wide range of products and network
services, as opposed to only single desktop applications such
as Illustrator, Photoshop or After Effects that dominated media
authoring in the 1990s and 2000s. For example, social network
services such as Facebook and Twitter include multiple programs
and databases running on company servers (for instance, in 2007
Google was running over one million servers around the world
according to one estimate?') and the programs (called “clients”)
used by people to send emails, chat, post updates, upload video,
leave comments, and perform other tasks on these services. (For
instance, one can access Twitter using twitter.com, or tweetdeck.

com, Twitter apps for iOS, Android, and dozens of third party
websites and apps.)

Media applications

Let us go through the software categories that support the first four
types of cultural activities listed above in more detail.

The first category is software for creatin g, editing, and organizing
media content. The examples are Microsoft Word, PowerPoint,
Photoshop, Illustrator, InDesign, Final Cut, After Effects, Maya,
Blender, Dreamweaver, Aperture, and other applications. This
category is in the center of this book. The industry uses a number
of terms to refer to this category such as “media authoring,”
“media editing,” and “media development” but I am going to refer
to this category by using a single summary term. [will simply call
it media software.

The second category is software for distributing, accessing, and
combining (or “publishing,” “sharing,” and “remixing”) media
content on the web. Think Firefox, Chrome, Blogger, WordPress,
Tumblr, Pinterest, Gmail, Google Maps, YouTube, Vimeo and

"' Pandia Search & Social, “ Google: one million servers and counting,” http://www.
pandia.com/sew/481-gartner.html

INTRODUCTION L

other web applications and services. Obviously, the h‘rst’ anc]i 52;(::2
categories overlap—for example, many d_esktop media aplp ic i
allow you to upload your creations dgectly to ;?()?u ‘?r‘l::]ude
.‘||.l|‘|nt': sites, while many w?b aPpllcgt_lons and s‘cr;,nce?rUbe i
some :1l1th()ring and editing functions (for example, You dnss
\ built-in video editor). And blogging platforms andb1§11;]§1 Llls =
it right in the middle—they are used as much for publishing 3
creating new content. o
" I"\:'I]Itl, tI:;(e for granted that since we a.ll use ‘appha.mong?;?i%;:r\?si
or “apps,” we have a basic understam{mg of rh’:s tcfrm. . 1in - it,al
also assume that we understand what “content” re ers t(-) dfﬁne
culture, but just to be sure, here are z; coz?ie\féi;rlz?etc;rcawd’
Je can simply list various types of medi: :
T‘ll.\‘l\rxefi.h;jrrlldsacfczsed with media softwarg gnd tbe tools 'pm:;fr:l
by social media and sites: texts, images, dlglt'al Vl(%CO,;nlmil)ns o;
3D objects and scenes, maps, as well as vanous‘conl -ln?lt:ﬁt“ =
these and other media. Alternatively, we can dc‘hrjeb (,(Ln =
listing genres, for instz;nce, weli. pag;z,mt:eet:;et;i] e(;(;te ;p"ideo:
asual games, multiplayer online games, - e,
::;:jh eigine ’rcsults, URLs, map Iocjanons, shargd bookrl:}?;ksl,] Se(:g
Digital culture tends to modullarlze content, 1.lc., ena _l(g)o e
to create, distribute, and re-use discrete content e emc;r;)ts blcctz 8
animations to be used as backgroupds .tor vnd.co‘s, 3 ; ‘o d] .
be used in creating complex 3D animations, pieces '0 gc? “cds e
used in websites and blogs, etc.'® (ThIS modulgnty_par:) b
fundamental principle of modern software er_lg‘mﬁe:lmfinétions xir
computer programs from small reusgblc pilrts ca te”
procedures.) All such parts also qualify as conter;1 g N
Between the late 1970s and the middle of the Sy (E’,[: :
cation programs for media editing‘ were d_(;isigz)nve(.lktsc:atril(l)rr]ls_anZj
user’s computer (minicomputers, PCs, scientt ic \w)rd = Cr;ated
later, laptops). In the next ﬁve. years, companies gradu i
more and more capable versions of these pr.ogrlam:s.‘ = (g;wn
the “cloud.” Some of these programs are a\:allab eh?lm rialkpii
websites (Google Docs, Microsoft Web -thce)é.w ile (i)ces .(e |
integrated with media hosting or soc1a|v me. 1a ST'W b are,
Photobucket image and video editor). Manyl app lca < g
implemented as clients that run on mobile phones (L"%;;CAWM;
on iPhone), tablets, and TV platforms and C()mmu:\llgl =
servers and websites. Examples of such platforms are Apple’s ;

26 SOFTWARE TAKES COMMAND

Google’s Android, and LG’s Smart TV App platform. Still others
are apps running on tablets such as Adobe Photoshop Touch for
iPad.” (While at the moment of writing both web-based and
mobile applications have limited editing capabilities in comparison
with their desktop counterparts, this may already have changed by
the time you are reading this book).

The development of mobile sofrware platforms led to the
increasing importance of certain media application types (and
corresponding cultural activities) such as “media uploaders™ (apps
designed for uploading media content to media sharing sites). To
put this differently, managing media content (for example, organ-
izing photos in Picasa) and also “meta-managing” (i.e. managing
the systems which manage it such as organizing a blogroll) have
become as central to a person’s cultural life as creating this content.

This book is about media software—its conceptual history, the
ways it redefined the practice of media design, the aesthetics of
the media being created, and creators’ and users’ understanding of
“media.” How can we place media software inside other categories
and also break it into smaller categories? Let us start again
with our definition, which I will rephrase here. Media software
are programs that are used to create and interact with media
objects and environments. It is a subset of the larger category of
“application software”—the term which is itself in the process of

changing its meaning as desktop applications (applications which
run on a computer) are supplemented by mobile apps (applications
running on mobile devices) and web applications (applications
which consist of a web client and the software running on a
server). Media software enables creation, publishing, accessing,
sharing, and remixing different types of media (such as images,
moving image sequences, 3D shapes, characters, and spaces, text,
maps, interactive elements), as well as various projects and services
which use these elements. These projects can be non-interactive
(2D designs, motion graphics, film shots) or interactive (media
surfaces and other interactive installations). The online services
are by their very nature always interactive (websites, blogs, social
networks, social media services, games, wikis, web media and app
stores such as Google Play and Apple iTunes, other shopping sites,

2 hrrp://\\wwr.adobe.com/producrs/muhlIeapps/ (March 12, 2012).

27
INTRODUCTION
i /s giv - ability to add to
il w0 on)—while a user is not always given thg ablht)t g
gl so ; g
i modify content, s/he always Qawg.ates and interac
uxlsting content using interactive interface.

i-billi : industry is
(iiven that today the multi-billion global cult}\:re 1;11du %
e ‘ applicati St at there 1s
siabled by media applications, 1th|s m;f?l:estl\xr:ﬁ(i;mm o s
" 7 r e |
e ray to classify them. e . .
nnple .uupted way i 3 i - sl
ipplication software” includes the categories ((); rc111 s
- 2 = ~cess software” (divide
rare” and “content acces (diy L
 —— ion applications).”” This 1s
ia play and presentation app
liwowsers, media players, e B
-tely accurate—since toda)
rally us but not completely accu lay me
izl i] some media editing
ces » also includes at least _
content access software” also 1 : ; e
functions. For example, the SeaMonkey browser f;;m srsa-
(RRAIN - . e) - o
I'oundation includes an HTML editor;* QuickTime a,,a i
0 B - ‘
s of video; supports
ut : arts of video; iPhoto :
used to cut and paste p : ot St o
{ photo editing operations. Conversely, in most ca}: My
|evelopment” (or “content creation ’) software suc Ao i
e i i e .
: PowerPoint is used to both develop and access con S
0 0
istence of authoring and access functions 1s 'anhl p -
disin f we visit the we
ishing f f software culture.) If w
distinguishing feature o .
! f cations suc
e se software applicat :
of popular makers of tl}e ‘ _ o
lm‘l »\putodesk, we will find that these companies may s
l»mducts' by market (web, broadcast, archxtccture,Ta; s o
; . % ¢ ... 73 » is as
Inw sub-categories such as “consumer > and “pro.]Sthe()rfﬁca]
if gets—another reason why we should focus our
as & — : : B
tools on interrogating media sotF\ware. e el el
While 1 will focus on media app lfcatl() g o g s
> {1 1 ifacts), cultu
“essi “C (i.e. media artifacts), cult :
accessing content | ; e e
JIso includes tools and services that are spttlhtf,v“}\,,(,ulegdge
p . £ arde n > ' =
for communication and sharing of mff)rmancl).r{)a g %
ie. “social software” (categories 3—4 in my lst). na”_apphca—
i.ng“ludc search engines, web browsers, blpg edlto'rsi t;l e
tions. instant messaging applications, wikis, socia ()OL ;s -
e . edicti arkets.
social networks, virtual worlds, and prcdlcn_on ml =
S d " : =
familiar names include Facebook, the family of fxoog[e ? Siat
i il, G ; o M
(Google Web search, Gmail, Google Maps, Goog ed+, ? the, 20'0()5’
Nledia\‘é’iki and Blogger. However, since at the' er; d() - Ogt,
. : . : ‘
merous software apps and services started to include email, post,
nu s

= lmp://en.wikipcdia.org/wiki/z\pplication _software
-~ hrtp://www.seamonkey—pro;ect.org/

28 SOFTWARE TAKES COMMAND

and chat functions (often via a dedicated “Share” menu), to an
extent, all software became social software.

Of course, people do not share everything online with others—
at least, not yet and not everybody. Therefore, we should also
include software tools for personal information management such
as project managers, database applications, and simple text editors
or note-taking apps that are included with every computer device
being sold.

These and all other categories of software shift over time. For
instance, during the 2000s the boundary between “personal infor-
mation” and “public information™ has been reconfigured as people
started to routinely place their media on media sharing sites, and
also communicate with others on social networks.

In fact, the whole reason behind the existence of social media
and social networking services and hosting websites is to erase this
boundary as much as possible. By encouraging users to conduct
larger parts of their social and cultural lives on their sites, these
services can both sell more ads to more people and ensure the
continuous growth of their user base. With more of your friends
using a particular service and offering more information, media,
and discussions there, you are more likely to also join that service.

As many of these services began to offer more and more advanced
media editing and information management tools along with their
original media hosting and communication and social networking
functions, they did manage to largely erase another set of boundaries
(from the PC era): those between application programs, operating
system, and data. Facebook in particular was very aggressive in
positioning itself as a complete “social platform” which can replace
various stand-alone communication programs and services.

Until the rise of social media and the proliferation of mobile
media platforms, it was possible to study media production,
dissemination, and consumption as separate processes. Similarly,
we could usually separate production tools, distribution technol-
ogies, and media access devices and platforms—for example, the
TV studio, cameras, lighting, and editing machines (production),
transmission systems (distribution), and television sets (access).
Social media and cloud computing in general erase these bound-
aries in many cases and at the same time introduce new ones
(client/server, open access/commercial). The challenge of software
studies is to be able to use terms such as “content” and “software

INTRODUCTION 29

ypplication” while always kce_ping in mind thaF-tlin;:'cur‘reI?fti s;);l:;
media/cloud computing paradigms are systematically reconng
-aning of these terms. o
"“\Inlxllt.iné?fation of interactive media _often ix}volves wntlmg‘bzmbz
original computer code, the programming enmronmen;s‘ a .5(; Lafaces
‘ u|‘|\.ldk‘r€d under cultural software. I\A(.)reox_'cr, tbe. media in e; :
themselves—icons, folders, sounds, animations, vxbratlflg. suf ?’ce:
ind touch screens—are also cultural soft_warc, since these \rlm.rI ac:u
mediate people’s interactions .with media and ot.hen‘- Seofdziti;:,al
stop here but this list can ealsllly be extended to include
-wories of software as well. _ :
‘II“IT::n:ltcrfacc category is particularly important for thls bct(}il;;
| am interested in how software appears to users—i.c. \;lare
functions it offers to create, share, reuse, mix, create, mana?e, sthese
.nd communicate content, the interfaces used to prej;r_lt s
functions, and assumptions and models about a user, her 1; needs,
and society encoded in these functions al}d thmr |ntcrtac; dtzisign.in
These functions offered by an appllcatl‘on ar}:‘ errrl e ‘;n :
application commandsd al.rlld tools.];ie};i:ei?n?n:‘ils zi; \C;)Lt;rt e
qth a given app, and how you ¢ it. = :
:\\:Il:i :ogmake ol::lpe important point about interfaces toy a‘»01d lzjitnewr
confusion. Many people still think thaF contempo.ravr} hconlpinal
devices use a Graphical User Interface (GUI). In reality, the (')r(;gallv
GUI of the early 1980s (icons, folders, menus) has been gra tg ns,
extended to include other media and senses (sounds, fml-m.a 1:) 0[;
and vibration feedback which may accompany user bmtcrﬁlgtl(‘m >~
a mobile device, voice input, multx-t()t}ch gesture chrdaccs,:)eiS .a
This is why the term “media intcrfacc" (used in the in ' u_?tl? -
more accurate description of how interfaces work _todzf)v. ‘ c e
accurately describes interfaces of computer operanng;yetc(rjn;)g 2
as Windows and Mac OS, and IT‘IObIlC OS such Angrm b“‘][; LO;;CS
is even applicable to interfau'es of game copsoles an n"no l:id[l)use ali
as well as interactive stores” or museum |n§te1|lat1?n§ ‘; o’
types of media besides graphics to communicate with the 3

f 1 ie -//www.nanikawa.
25 For examples, see Nanika’s projects for Nokia and Diesel, http://www.nanik

=
-om/; Audi City in London, opened 2012.) - , :
w::/xr e:'qmple' see interactive installations at the >0b€! Peace Cent;r 13/ 0,“5,]‘:
Nobel (Ajimmber Nobel Field, and Nobel Electronic Wall Papers, hrep://www.

nobelpeacecenter.org/en/exhibitions/peace-prize laureates.

30 SOFTWARE TAKES COMMAND

[also need to comment on the “media/content™ vs. “data/infor-
mation/knowledge” categories used to organize my list of types of
cultural software above. As with many other categories that I will
use in this book, I think of them as marking the two parts of the
same continuous dimension rather than as being discrete either/or
boxes. A feature film is a good example of the first category, and
an Excel spreadsheet represents the second category—but between
such clear-cut examples, there are numerous other cases which
are both. For example, if I make an information visualization of
the data in the spreadsheet, this visualization now fits equally into
both categories. It is still “data,” but data represented in a new
way which allows us to arrive at insights and “knowledge.” It also
becomes a piece of visual media which appeals to our senses in the
same way as photographs and paintings do.

The reason that our society places these two sets of terms in

opposition has to do with the histories of the media and infor-
mation industries. Modern “media” is the result of the technologies
and institutions which developed between the second half of the
eighteenth and first half of the twentieth centuries: large-scale
newspaper, magazine and book publishing, photography, cinema,
radio, television and the record industry. “Data” comes from a
number of separate professional fields with distinct histories: social
statistics, economics, business management, and financial markets.
It is only in the beginning of the twenty-first century that data leaves
professional domains to become of interest to society at large. Data
becomes “sexy” and “hip,” with governments and cities creating
their own data portals (for example, data.gov and data.gov.uk),
visualizations of data entering exhibitions of major museums such
as MOMA (Design and Elastic Mind, 2008), the computer “nerds”
becoming heroes of Hollywood films (Social Network, 2010),
and Google Analytics, Facebook, YouTube and Flickr all offering
detailed data about your website or media sharing account. Of
course, since media software operations (as well as any other
computer processing of media for research, commercial or arrtistic
purposes) are only possible because the computer represents media
as data (discrete elements such as pixels, or equations defining
vector graphics in vector files such as EPS), the development of
media software and its adoption as the key media technology
(discussed in this book) is an important contributor to the gradual
coming together of media and data.

INTRODUCTION 31

Software includes many other technologies and types, .and
computers and computer devices also perform lots of other functions
besides creating and playing media. And of course, software nAceds
hardware to run; and networks are also an essential part of our
digital culture. Therefore, my focus on software applications for
creating, editing, and playing media is likely to annoy some.pco.ple.
Not everybody uses Photoshop, Flash, Maya, and other apphcanoqs
(0 create media. A significant number of people work with x.n.efila
by writing their own computer programs and scripts, or modlfy'lng
programs written by others. These are programmers r_esponmble
for the coding of websites, web applications, ;—md other interactive
applications, software artists, computer scientists workmg on the
development of new algorithms, students using Processing and
other high-level media programming languages, and other groups.
All of them may ask me why [single out software in the fg(m ()f
consumer products (i.e. applications)—as opposed to the activity of
programming? And what about the gradual dempcranzauon of
software development and the gradual increase in the nllmbcr
of culture professionals and students who can program or write
scripts? Should I not put my energy into promoting programming
rather than explaining applications?

The reason for my choice is my commitment to understand the
mainstream cultural practices rather than to emphasize (as many
cultural critics do) the exceptions, no matter how progressive they
may be. Although we do not have an exact number, I assume
that the number of people who work in media and f\'hq can also
program is tiny in comparison to the army 0{ appllganon users.

loday, a typical professional graphic designer, film cdxtgr, product
dcsigﬁcr, architect, music artist—and certainly a ty[_ncal person
uploading videos to YouTube or adding photos and vld‘eo on her/
his blog—can neither write nor read software code. (Being able to
read and modify HTML markup, or copy already pre—packz_lged
lines of Ja\'asc;ipt code is very different frqm programming.)
Therefore, if we want to understand how software has already
re-shaped media both conceptually and practically, we ha?.'e to
take a close look at the everyday tools used by the great majority
of both professional and non-professional users—i.e. apphcano'n
software, web-based software, and, of course, m()'blle apps. (This
book highlights the first category at the expense ()t.the seconAd an'd
the third—because at this point, creation of professional media still

32 SOFTWARE TAKES COMMAND

requires applications running on a laptop or desktop, often with a
significant amount of RAM and large hard drives; and also because
currently web-based and mobile software are still evolving quite
rapidly in contrast to desktop applications such as Photoshop and
Final Cut which change only incrementally from release to release).

Any definition is likely to delight some people and to annoy
others. Therefore, I also would like to address another likely
objection to the way I defined the term “cultural software” (with
“media software” being its subset). The term “culture” is not
reducible to separate media and design “objects” which may exist
as files on a computer and/or as executable software programs or
scripts. It includes symbols, meanings, values, language, habits,
beliefs, ideologies, rituals, religion, dress and behavioral codes,
and many other material and immaterial elements and dimensions.
Consequently, cultural anthropologists, linguists, sociologists, and
many humanists may be annoyed at what may appear as an
uncritical reduction of all these dimensions to a set of tools for
creating and playing media files.

Am I saying that today “culture” is equated with a particular
subset of application software and the media objects and experi-
ences that can be created with their help? Of course not. However,
what I am saying—and what | hope this book explicates in more
detail—is that at the end of the twentieth century humans have
added a fundamentally new dimension to everything that counts as
“culture.” This dimension is software in general, and application
software for creating and accessing content in particular.

I'am using the metaphor of a new dimension on purpose. That
is, “cultural software” is not simply a new object—no matter
how large and important—which has been dropped into the
space which we call “culture.” Thus, it would be imprecise to
think of software as simply another term which we can add to
the set which includes music, visual design, built spaces, dress
codes, languages, food, club cultures, corporate norms, ways of
talking and using a body, and so on. And while we can certainly
study “the culture of sofrware“—pmgramming practices, values
and ideologies of programmers and software companies, the
cultures of Silicon Valley and Bangalore, etc.—if we only do this,
we will miss the real importance of software. Like the alphabet,
mathematics, printing press, combustion engine, electricity, and
integrated circuits, software re-adjusts and re-shapes everything it

INTRODUCTION 33

in applied to—or at least, it has a potgntial to do this.]L_nst as adding
i new dimension adds a new coordinate to every point in space,
adding” software to culture changes the 1dcn_t1t_v ofieveryrhmfg
that a culture is made from. (In this respect, software isa pcrf‘u.;
example of what McLuhan meant when h_c wrote, the messagc‘o
iny medium or technology is the change of scale or pace or pattern
that it introduces into human affairs.”?’) -
o summarize: our contemporary society can bg‘characterlzed
\s a software society and our culture can be justifiably called'a
oftware culture—because today software plays a cent.ral role 'Hi
\haping both the material elements and many of the immateria
structures that together make up “culture.”

From documents to performances

I'he use of software re-configures most basic social and C'lllT.'llri'il.
practices and makes us rethink the concepts aqd theo‘rcliexs \l\]c
developed to describe them. As one example 'ot‘ this, consider t L
modern “atom” of cultural creation, transmission, and memory:
a “document,” ie. some content stored in a physical ff)rm,
that is delivered to consumers via physical copies (books, films,
audio record), or electronic transmission (telewslon‘}: l‘n softwaff
culture, we no longer have “documents,” “works, messag,csd
or “recordings” in twentieth-century terms.]n§tcad of fixe

documents that could be analyzed by examining their structure qnd
content (a typical move of the twcntieth—cenn.lry cultural a.na_lysns
and theory, from Russian Formalism to the‘rary Dar\\:‘mlsm),
we now interact with dynamic “software performances. 'I use
the word “performance” because what we are experiencing is
constructed by software in real time. So whether we are exploring
a dynamic wébsire, playing a video game, or using an app ‘on ya
mobile phone to locate parti;cular p|elFES or frlcndsbnear'l?}_h, \}:e‘
are engaging not with pre-defined startic dgcumcnts ut with the
dynamic outputs of a real-time computation happening on our

Marshall McLuhan, Understanding Media: The E.\'tensm?s of':\'hz\n (‘Ncw Yo_rﬁ:
\1;Gr1w Hill, 1964), quoted in New Media Reader, Noah Wardrip-Fruin and Nic
Montfort (eds) (The MIT Press, 2003), p. 203.

34 SOFTWARE TAKES COMMAND

device and/or the server. Computer programs can use a variety
of components to create these performances: design templates,
files stored on a local machine, media from the databases on the
network server, the real-time input from a mouse, touch screen,
joystick, our moving bodies, or some other interface. Therefore,
although some static documents may be involved, the final media
experience constructed by software usually does not correspond to
any single static document stored in some media. In other words, in
contrast to paintings, literary works, music scores, films, industrial
designs, or buildings, a critic cannot simply consult a single “file”
containing all of the work’s content.

Even in such seemingly simple cases as viewing a PDF document
or opening a photo in a media player, we are already dealing with
“software performances”—since it is software which defines the
options for navigating, editing, and sharing the document, rather
than the document itself. Therefore examining the PDF file or a
JPEG file the way twentieth-century critics would examine a novel,
a movie, or a TV program will only tell us some things about
the experience we get when we interact with this document via
software—but not everything. This experience is equally shaped by
the interface and the tools provided by software. This is why the
examination of the tools, interfaces, assumptions, concepts, and the
history of cultural software—including the theories of its inventors
who in the 1960s and 1970s have defined most of these concepts—
is essential if we are to make sense of contemporary media.

This shift in the nature of what constitutes a media “document”
also calls into question well-established cultural theories that
depend on this concept. Consider the intellectual paradigm that
dominated the study of media since the 1950s—the “trans-
mission” view of culture developed in Communication Studies.
Communication scholars have taken the model of information
transmission formulated by Claude Shannon in his 1948 article A
Mathematical Theory of Communication (1948)% and his subse-
quent book published with Warren Weaver in 1949,% and applied

*® C. E. Shannon, “A Mathematical Theory of Communication,” Bell System
Technical Journal, vol. 27, pp. 379-423, 623-56, July, October, 1948, hup://
cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

Claude E. Shannon and Warren Weaver, The Mathematical Theory of
Communication (University of lllinois Press, 1949).

INTRODUCTION 35

\ts basic model of communication to mass media. The‘ paradigm
described mass communication (and sometimes culture in general)
\s 2 communication process between the authors who create and
send messages and the audiences that receive _them. Accordmg }:0
this paradigm, the messages were not gl\\fay's tu_llyl decoded by t L
\udiences for technical reasons (noise in transmission) or semantic
reasons (they misunderstood the intended meanings).. .
Classical communication theory and media indusmes copydered
such partial reception a problem; in contrast, 1n }‘fls m'ﬂ‘uentrial 1980
article “Encoding/decoding™ the founder of Brltxsh (,Lxlrgral
Studies, Stuart Hall, argued that the same phenorpenon is positive.
Hall proposed that the audiences construct their own meanings
from the information they receive. Rather than being a commu-
nication failure, the new meanings are active acts ot. intentional
reinterpretation of the sent messages. But'b_()th the cl:asslcal commu-
nication studies and cultural studies implicitly t(?()k for granted that
the message was something complete and dehnite—regardless of
whether it was stored in physical media (e.g. magnetic tape) or
created in real time by a sender (a live TV broadcast). Thus, the
receiver of communication was assumed to read all of the adver-
tising copy, see a whole movie, or listen to the _wholf; song and only
After that s/he would interpret it, misinterpret it, assign his/her own
.anings, appropriate it, remix It, etc. _
Im\]‘{-"hilz ;hi}zzssﬁmption has already been challenggd by rhe: intro-
duction of the DVR (digital video recorder) in 1999, which led
to the phenomenon of time shifting, it -snnp_ly does not flppl‘y: t()
interactive software-driven media. The interfaces Qt media access
applications, such as web browsers ar.ld sea'rch engines, the hy_per-‘
linked architecture of the World Wide Web, anq the mtcrtacesf
of particular online media services offering massive numbers o
media artifacts for playback preview and/or purchase (Amazon,
Google Play, iTunes, Rhapsody, Netﬂlx,_ etc.), encourage peog!e
to “browse,” quickly moving both horizontally between media
{from one search result to the next, from one song to another, etc.)
and vertically, through the media artifacts (e.g., from the contents
listing of a music album to a particular rrack]_. They al.so made it
easy to start playing/viewing media at an arbitrary point, and to

1 Seuart Hall, “Encoding/decoding,” in Culture, Media, lLanguage, ed., Centre for
o 5 el & O g %
Contemporary Cultural Studies (London: Hutchinson, 1980).

36 SOFTWARE TAKES COMMAND

leave it at any point. In other words, the “message” that the user
“receives” is not just actively “constructed” by him/her (through a
cognitive interpretation) but also actively managed (defining what
information s/he is receiving and how).

It is at least as important that when a user interacts with a
software application that presents media content, this content often
does not have any fixed finite boundaries. For instance, a user of
Google Earth is likely to experience a different “Earth” every time
she is accessing the application. Google could have updated some
of the satellite photographs or added new Street Views; new 3D
buildings, new layers, and new information on already existing
layers were also likely to be added. Moreover, at any time a user of
the application can load more geospatial data created by other users
and companies by either selecting one of the options in the Add
menu (Google Earth 6.2.1 interface), or directly opening a KLM file.
Google Earth is a typical example of a new type of media enabled
by the web—an interactive document which does not have all of its
content pre-defined. Its content changes and grows over time.

In some cases this may not affect in any significant way the
larger “messages” “communicated” by the software application,
web service, game, or other type of interactive media. For example,
Google Earth’s built-in cartographic convention of representing the
Earth using the General Perspective Projection (a particular map
projection method of cartography) does not change when users add
new content and turn on and off map layers. The “message” of this
representation is always present.’’

However, since a user of Google Earth can also add his/her own
media and information to the base representation provided by the
application, creating complex and media rich projects on top of
existing geoinformation, Google Earth is not just a “message.” It
is a platform for users to build on. And while we can find some
continuity here with the users’ creative reworking of commercial
media in the twentieth century—pop art and appropriation, music
remixes, slash fiction and video,? and so on, the differences are
larger than the similarities.

= hrtp://cn.wikipedia.(:rg/wiki/(;()(vglc_carth#Technica]_spcciﬁcarions (March 14,
2012).

** See, for instance, Constance Penley, “Feminism, Psychoanalysis, and the Study of
Popular Culture,” in Cultural Studies, ed. Lawrence Grossberg (Routledge, 1992).

INTRODUCTION 37

['his shift from messages to platforms was in the center of thf)
Wel's transformation around 2004—6. The result was named We .
) (), The 1990s websites presenting particular content created by
uthers (and thus, communicating “messa.ges") were supplcmenred
lyy social networks and social media sites where the uﬁér_s gdan
whare, comment on, and tag their own media. The \‘(j‘klperlg
(iticle on Web 2.0 describes these differences as tpll()ws: A W§
) () site allows users to interact and collaborate wnt‘h each other in
, wocial media dialogue as creators (prosumers) of user'-generated
(ontent in a virtual community, in contrast to \\:"CbSltL-‘S where
users (consumers) are limited to the passive viewing of contep;
(hat was created for them. Examples ()f. W’eb 2.0 include s?cfm
networking sites, blogs, wikis, vic‘ieo sharm_g 31£e3§, hostefi ser;-l‘aes,
web applications, mashups and folksonomies.™ For e.\fim? (.v, to
continue with the Google Earth example, users added ma.n}‘ types
ol plobal awareness information, including fair t.rade cer’n]ﬁuatxon,
(,reenpeace data, and United Nations Mlllem'uum Deve ()(E)mcrllt‘
(,0als Monitor.>* In another example, you can incorporate .()()g;
Maps, Wikipedia, or content provided by most other la-rgev \\'-ef
)0 sites directly in your web mashup—an even more.dlre.u w a~y (;
taking the content provided by web services and using it to craft
- own ¢ latforms. .
\‘”;Ilmlci\‘\ii:'il;sr:;:irggti()n of Web 2.0 serw'ices alf)ng \yith \-:arl()u%
web-based communication tools (or_llmc -d_lscussu)nrkt_ou(ljr_xlm
about all popular software, collabqratl've cdlr‘mg on .\X'I lpClts’f.
I'witter, etc.) enables quick identifications of 'omj;ssmn?, selec-
tions, censorship and other types of “bad behavior by}s()#{)warg
publishers—another feature which separates content distri gt‘eh
ly web-based companies from mass _m?d'a& of the twvcrtnn;to
century. For example, every article on Wikipedia a‘b()ut a .\?&:eb 24
wnicct includes a special section about controversies, Criticism, or
‘”(I)nrs.manv cases, people can also use glternativc opcn_so(urt‘ie/
cquivalents of paid and l()gked appllcathns. Open SOL{I‘LC afn
or free software (not all free software is open source) o ten
allow for additional ways of creating, remixing and sharing
both content and new software additions. (This does not mean

hrtp:/‘/en.wikipedia.org/\\fiki/\Veb_l.() {March 14, 2()/12’). 7-
: http://en.\\'ikipedia.org/\\'iki/(;()ogle earth (March 14, 2012).

38 SOFTWARE TAKES COMMAND

that open source software always uses different assumptions and
technologies than the commercial software.) For example, one
can choose to use a number of alternatives to Google Maps and
Google Earth—OpenStreetMap, Geocommons, WorldMap, and
others which all have open source or free software licenses.
(Interestingly, commercial companies also often use data from
such free collaboratively created systems because they contain
more information than the companies’ own systems. OpenStreet
Map, which by early 2011 had 340,000 contributors,* is used
by Flickr and Foursquare.’’) A user can also examine the code of
open-source software to fully understand its assumptions and key
technologies.

Continuously changing and growing content of web services
and sites; variety of mechanism for navigation and interaction; the
abilities to add one’s own content and mashup content from various
sources together; architectures for collaborative authoring and
editing; mechanisms for monitoring the providers—all these mecha-
nisms clearly separate interactive networked software-driven media
from twentieth-century media documents. But even when a user is
working with a single local media document that is stored in a single
computer file (a rather rare situation these days), such a document
mediated through software interface has a different identity from a
twentieth-century media document. The user’s experience is only
partly defined by the file’s content and its organization. The user
is free to navigate the document, choosing both what information
to see and the sequence in which sthe is seeing it. And while “old
media” (with the exception of twentieth-century broadcasting)
also provided this random access, the interfaces of software-driven
media players/viewers provide many additional ways for browsing
media and selecting what and how to access.

For example, Adobe Acrobat can display thumbnails of every
page in a PDF document; Google Earth can quickly zoom in and out
from the current view; online digital libraries, databases and repos-
itories containing scientific articles and abstracts such as the ACM

* http://geocommons.com, htep:/fww w.openstreetmap.org, http://worldmap.
harvard.edu

. hrrp:,f,v"cn.wikipedia.<)rg/\\-iki/Coumer»mapping#OpcnS(rcetMap {March 27, 2012).
" hrrp:!’/cn.\\'1kip:~dia.nrg/wiki/OpcnStrectMap#Dcrivations_of,,OpcnbrrcerMap_
Data {March 27, 2012).

Bigital Library, IEEE Xplore, Pub

upiis, and Web of Scie cles'w : =
::t .'l.. one you currently selected. Most importantly, thes

fils and interfaces ar i
thesselves (such as a random access capacity o
wt media access machines (such as a radio); instea)

ul l'n

ahidition ot new 1 1
> doc s themselv :

Wanpe to the documents st

.'c l’ | can add sharing buttons to my blog, thus enabling

il an <

wiays of circul

39
INTRODUCTION

Med, Science Direct, SciVerse
1 hic ain re nces
nce show articles which contain refere

e not hard-wired to the rnedia.d()cumcnts
y of a printed book)

i 1 “hitecture ena easy
te software layer. This media architecture enables eas;
e o Is withour any
navigation and management tools w o
: es. For instance, with a single

ation for its content. When l‘ open a tcx; (?OC\;IT;:::
i1t Mac OS X Preview media viewer, I can hlghhghht, aq ll;::\ R t(.)
il links, draw, and add thought bubbles. Pho“tosvv (})1p at mo,difvmg
I e my edits on separate “adjustment layers,” withou ying

il original image. And so on.

Why the history of cultural software does
not exist

cTaeT OT €ro pasBUTHA.”
“Besikoe ONMCaHKe MHPA CHIIbHO OTCTAeT OT €ro pas .
(Translation from Russian: “Every description ¢
ré g £
i ind its actual development.”)
antially lags behind its actua "
e Tas Kartoma, V] on MTV.ru, 2008.°

ve a S W JEC— 10 < Cllh urc \\‘here the
We ll e 1mn ()ft\ yare Llll[l re th'(1S, a
C d ¢

: (. is mediated

production, distribution, and reception of most u)r:tezll:) e
2 . o '
st creativ ssionals
ftwe : 7 most creative profess :
by software. And vet, 1 : A) SR
o about the intellectual history of software they use s s
2

Alm'\:‘:’lﬁgtoshop Hlustrator, GIMP, Final Cut, After Effects, Blender,
we < 3

Flame, Maya, MAX, or Dreamweaver.) -
Where does contemporary c_ultural sgfn\valre;il\ oy
were its metaphors and techniques amvct‘l at? ; innent Cbn]purcr
developed in the first place? Currently.m()st prénnd i
eb companies have been cxtenswel_y covere ‘1 B, .
ey e P latively well-known (for instance, I*a%cboo s
Apyl But this is only the tip (_)f the lccbe.rg.
horing and editing software remains
he common statements that the

their history
Google, and ;—\pplc)t
The history of media aut .
pretty much unknown. Despite t

40 SOFTWARE TAKES COMMAND

digital revolution is at least as important as the invention of the
printing press, we are largely ignorant of how the key part of this
revolution—i.e., media sofrware—was invented. When you think
about this, it is unbelievable. People in the business of culture know
about Gutenberg (printing press), Brunelleschi (perspective), The
Lumiére Brothers, Griffith and Fisenstein (cinema), Le Corbusier
(modern architecture), Isadora Duncan (modern dance), and Saul
Bass (motion graphics). (If you happen not to know one of these
names, I am sure that you have other cultural friends who do).
And yet, even today, relatively few people have heard of O R
Licklider, Ivan Sutherland, Ted Nelson, Douglas Engelbart, Alan
Kay, and their collaborators who, between approximately 1960
and 1978, gradually turned the computer into the cultural machine
it is today.

Remarkably, the history of cultural software as a discrete
category does not yet exist. What we have are a number of largely
biographical books about some of the key individual figures, and
research labs such as Xerox PARC or MIT Media Lab—but no
comprehensive synthesis which would trace the genealogical tree
of media tools. And we also do not have any detailed studies which
would relate the history of cultural software to the history of
media, media theory, or history of visual culture.

Modern art institutions—museums such as the MOMA and
the Tate, art book publishers such as Phaidon and Rizzoli, etc.—
promote the history of modern art. Hollywood is similarly proud
of its own history—the stars, the directors, the cinematographers,
and the classical films. So how can we understand the neglect of
the history of cultural computing by our cultural institutions and
computer industry itself> Why, for instance, does Silicon Valley
not have a museum for cultural software? (The Computer History
museum in Mountain View, California has an extensive permanent
exhibition which is focused on hardware, operating systems, and
programming languages—but not on the history of software.)

I believe that the major reason has to do with economics.
Originally misunderstood and ridiculed, modern art has eventually
become a legitimate investment category—in fact, by middle of
the 2000s, the paintings of a number of twentieth-century artists

= http://\v‘n\'.mrv.ru/air/\'js/taya/main.whp (February 21, 2008).

INTRODUCTION ol

were selling for more money than the works of the mqst tamc;us\
glassical artists. Similarly, Hollywood continues to receive pr(\)/l;s»
from old movies as it reissues them in new tprmats ()VHS, D 3
|11, Blu-ray disks, etc). What about the IT industry? It dqesdn()t
derive any profits from the old s_oftware—and thcrefor'e Ylt ())relz
nothing to promote its history. Of course, contemporary \gsxf ;-
of Microsoft Word, Adobe Photoshop, Autodesk AutoCAh : gn.
many other popular cultural applications were built on the rst
versions, which often date from the 1980s, ‘and the companies
continue to benefit from the patents they filed for new te'chn()logles
used in these original versions—but, in contrast to the video gignes
from the 1980s, these early software versions are not tYea‘FLl a;
separate products which can be re—lssugd today. (In pnrm.lp::l;Et
can imagine the software industry creating a Y»’hole new ‘ma =
for old software versions or appllcatlon's which at_sonjcipm‘n
were quite important but no longer exist tod?y——torﬂlynst;anr:teiz
\ldus Pagemaker. In fact, given that consumer culrprc ‘?Sti tt;eir
cally exploits adults® nostalgia for the cultgrgl cxperle:*nTLrs- oft s
u-ui;lg,e and youth years, it is actually surprising that early §0 ~\;(7 .
versions were not seen as a market opportunity. If I used Mau r;t(e;
and MacPaint daily in the middle of the. 1980s, or Photoshop .h
and 2.0 in 1990-3, I think these experiences would b? as’ IT\LII]C
part of my “cultural genealogy” as the movies and art | saw atft 'at
time. Although I am not necessarily ad\'ocat{ng the crc;;:u’m o ‘;
another category of commercial products, if early so wla're W t
widely available in simulation, it would c:litalyze _cultAu.ra lqtereis
in software similar to the way in which wide avmla!‘nhtyl,off ear?f
computer games, recreated ford_contemporary mobile platforms,
i 1eld of video game studies.)
'llegxfrc?r?lz)li thfeorists i:o far have not considers:d ctlltuFal"S(ifF\x'érti
as a subject of its own, distinct from “‘socn_al medl'i. ik S(,)ua}_
networks,” “new media,” media art,” “the mtcrrTet, «IIEF(«-raL\x
tivity,” and “cyberculture,” we lack not only a conceptua lstt(t)lrje
of media editing software but also systematic lnves‘tlgatl()l?sdfzi =
roles of software in media prodxfctmn. For |nsta.r.1c.e, hf)W 1il~ati0n
adoption of the popular animation and compositing applic =
After Effects in the 1990s reshape the language of moving ’lma‘geb
How did the adoption of Alias, Maya :.md otber 3D packaéz,ni d)
architectural students and young archlt.ects in thev same ecahe
similarly influence the language of architecture? What about the

42 SOFTWARE TAKES COMMAND

co-evolution of Web design tools and the aesthetics of websites—
from the bare-bones HTML in 1994 to visually rich Flash-driven
sites five years later, and responsive web design in the early 2010s?
You will find frequent mentions and short discussions of these
and similar questions in articles and conference talks, but as far
as | know, there has been no book-length study about any of these
subjects. Often, books on architecture, motion graphics, graphic
design and other design fields will briefly discuss the importance
of software tools in facilitating new possibilities and opportunities,
but these discussions are not usually further developed.

In summary, a systematic examination of the connections
between the workings of contemporary media software and the
new communication languages in design and media (including
graphic design, web design, product design, motion graphics,
animation, and cinema) has not yet been undertaken. Although
this book alone cannot do it all, I hope that it will provide some
general models of how such connections can be teased out—as well
as provide a detailed analysis of how software use redefined certain
cultural areas (e.g., motion graphics and visual design).

By focusing on the theory of software for media design, this
book aims to complement the work of a few other theorists that
have already examined software responsible for game platforms
and design (Ian Bogost, Nick Montfort), and electronic literature
(Noah Wardrip-Fruin, Matthew Kirschenbaum).

In this respect, the related fields of code studies and platform
studies being developed by Mark Marino,* Nick Montfort, Ian
Bogost and others are playing a very important role. According
to Marino (and I completely agree), the three fields of software
studies, code studies, and game studies complement each other:
“Critical code studies is an emerging field related to software
studies and platform studies, but it’s more closely attuned to the
code itself of a program rather than the program’s interface and
usability (as in software studies) or its underlying hardware (as in
platform studies).”*

* hetp//chnm2011.thatcamp.org/05/24/session-proposal-critical-codestudies/ {July
14, 2011).

{NTRODUCTION 43

summary of the book’s narrative

lictween the early 1990s and the middle of the 20005,. mcgla
oftware has replaced most of the other medla‘technologles that
cmerged in the nineteenth and twentieth centuries. Most contem(i
|nn.|;\ media is created and accessed via c.ultur'al sotrws;re—aT ;
yet, surprisingly, few people know about its history. What \l\a(.;
the thinking and motivation of people who .between }960 d}il
the late 1970s created the concepts and practical tF‘thlunS that
underlie today’s cultural sofrware? How does the shift to sohware;
based production methods in the 1990s change our comcptsr(‘i-
media™? How have interfaces and the tools of content de\a
opment software reshaped and continued to shap.e the aCSthedt‘l,Li
imd visual languages we see in contemporary Ficmgn and media?
I'hese are the key questions that I take up in thlS‘ book. :
My aim is not provide a comprehensive h|§t0ry' qt cultura
woftware in general, or media authoring sohw'are in part-lcular. Nor
do 1 aim to discuss all the new creative techniques mcdlg software
enables across dozens of cultural fields. .lnstead, I will trac;' a
particular path through this history that wx_l! take us f[‘Of’!] 196.(to
today and which will pass through some ot. its most cruu:al po(lintf..‘
In the following I summarize this narrative and‘also introduce
some of the key concepts developed in cach.part of the 'b()ok. .
Part 1 looks at the 1960s and 1970s. While new media rh‘eorlsts
have spent considerable efforts in trying to undgrstand :ihe,fe-dtl(:;c
ships between digital media and old(?r' physical an (,({L.Ui),.
media, the important sources—the writing and projects by \!a\n
Sutherland, Douglas Engelbart, Ted Nelson, Alan Kay, qnd ot‘lgr
pioneers of cultural software working in these dccadcs-—snll _rcma}lln
largely unexamined. What were their reasons 'for _m\'(innng t‘:
concepts and techniques that today n1ak§ it p(’)'SSIbl(f torhgomputc 1;
to represent, or “remediate” other medm.’ Why dld‘ these }:)e(_)p
and their colleagues work to systematically turn a computer mlto
2 machine for media creation and manipulation? Thesefafe t he
questions that I take in Part 1, which explore§ ‘them by ()&All.‘:'lng
on the ideas and work of the key protagonist of “cultural software
movement”—Alan Kay. (It is certainly possd?lc to construct a more
exclusive or an alternative history which wxll. pay equal attentmg
to dozens of brilliant people who worked with these people an

SOFTWARE TAKES COMMAND

who, together, invented all the details which form the DNA of
contemporary media software—for instance, Bob Taylor, Charles
Thacker, John Warnock, and others working at Xerox PARC in
the 1970s; or the people who contributed to the design of the first
Macintosh.* However, since we do not yet even have a theoretical
analysis of how the ideas of the most well-known figures of the
1960s collectively changed media, this book will start with these
figures, and the analysis of their theoretical writings.)
I'suggest that Kay and cultural software pioneers aimed to create
a particular kind of new media—rather than merely simulating the
appearances of old ones. These new media use already existing
representational formats as their building blocks, while adding
many previously nonexistent properties. At the same time, as
envisioned by Kay, these media are expandable—that is, users
themselves should be able to easily add new properties, as well as
to invent new media. Accordingly, Kay calls computers the first
metamedium whose content is “a wide range of already-existing
and not-yet-invented media.”
The foundations necessary for the existence of such metamedium
were established between the 1960s and the late 1970s. During this
period, most previously available physical and electronic media
were systematically simulated in software, and a number of new
media were also invented. This development takes us from the very
interactive design program—Ivan Sutherland’s Sketchpad (1962)—
to the commercial desktop applications that made software-based
media authoring and design widely available to members of
different creative professions and, eventually, media consumers as
well—AutoCAD (1982), Word (1984), PageMaker (1985), Alias
(1985), Illustrator (1987), Director (1987), Photoshop (1989),
After Effects (1993), and others. (These PC

applications were paral-
leled by much more

expensive systems for professional markets
such as the TV and video industries which got Paintbox in 1981,
Harry in 1985, Avid in 1989, and Flame in 1992.)

So what happens next? Did Kay’s theoretical formulations as
articulated in 1977 accurately predict the developments of the
next thirty years, or have there been new developments that his
concept of “metamedium” did not account for? Today we do

* For the stories that document the inventions by doz

ens of people of the multiple
technologies that made up the origin

al Macintosh, see www.folklore.com

45
INTRODUCTION

Ideed use a variety of previously exnsn}ng)medlz::lizlir:vu1castelgioi;11
sultware as well as new previously nqn—emstvant me tics, %O.thcse
huve been continuously extended. \\'1th new l];()ropltltrcc a.[sy
processes of invention and amplification take pda b g
ui o they follow particular paths? In other-_wor fs,d\]e C()Icnpmer
Loy mechanisms responsible for the extension o

metamedium? . , e
PParts 2 and 3 are devoted to these quesnons.(;l'hei Ir)rzlecn:: i
number of different mechanisms which drove develop

i focus on the
gxpansion of the computer metamedium, with th;'tOFII ipetere
{9905 when media software was gradualily acjiqf[;te nltn;)ncepts e

i i e differe
> : fia production. 1 use thre : :
| ey -w aesthetics of visual media
s y -nts and the new aes
describe these developmen 1 s i
i second part of the 1990s atter the p
which developed in the secon . F i
fici concepts a
i 2ac fficient speed. These three
ol adoption reached su g iy i
1 art evelop
idizati tion, and deep remix.
media bybridization, evolution, : o
| is of this sec tamedium dev
; f this second stage of me
the theoretical analysis o ¢ gy o
i ing it with a number of examples
opment, illustrating it with a | g viob
I:Hvrcnt genres of digital media. Part 3 focuse;_ln ditjxgraphics
; y risual design (motion graphics |
use of software for visua . i it iy
alyzi lationships between the nev ,
design), analyzing the re be oy ot
. il i e S the operatic
ing and s ages and compositions, an _ ic
moving and still images o’ vl
: f d to create them such as f
interfaces of software use o L
i s of the translation from phy '
| argue that in the process ; B o
clectronic media rechnologies to software, all 1qdn idual :;ca “r?let”
2 ; o .
nd tools that were previously unique t%h41ﬁercr:F :had boori}
l ' f 1 S in
i 5 rare environment. lhis mee
within the same software : oA
mental consequences for human cultural de\(;elc;]pme}:ltlar;;lndscape
e 1 . > whole
i i ted and transformed the v
media evolution. It disrup : . : g
of media technologies, the creative professions that use
. ia itself. :
the very concept of media ' .
Once they were simulated in a computer, prE\ lOUSlyb'ln -
[i 1 1 combine
patible techniques of different media bggm t()‘de C =
ndless new ways, leading to new media hybrids, or, e o
% j i 25 . - » =
i ical aphor, new “media species.” As just one
s 15 h’ hink. for instance, of the popular Google
. s, think, fo A :
among countless others, thi : bt S
: icati bining techniques of tra ‘
Earth application, com 3 o i B
\ 1 ie : ormation Sys
) field of Geographical In 3
the concepts from the : hical s g
(GIS) 31§) computer graphics and ammatmn,'socu;]l. S(;,f:[,‘t)' t(;
¥ i e : y
e 1rcf’x and other elements and functions. In my view, this 2
SE3 3

46 SOFTWARE TAKES COMMAND

combine previously separate media techniques represents a funda-
mentally new stage in the history of human media, human semiosis,
and buman communication, enabled by its “softwarization.”

I describe this new stage in media evolution using the concept
of hybridity. In the first stage, most existing media were simulated
in a computer and a number of new types of media that can only
be realized in a computer were invented. In the second stage, these
simulated and new mediums started exchanging properties and
techniques.

To distinguish these processes from more familiar remixes, I
introduce the new term deep remixability. Normally a remix is
a combination of content from a single medium (like in music
remixes), or from a few mediums (like Anime Music Video works
which combine content from anime and music video). However,
the software production environment allows designers to remix
not only the content of different media types, but also their funda-
mental techniques, working methods, and ways of representation
and expression.

While today hybridization and deep remix can be found at work
in all areas of culture where software is used, I focus on particular
area to demonstrate how it functions in detail. This area is visual
design in general, and motion graphics in particular. Motion graphics
is a dynamic part of contemporary culture, which, as far as I know,
has not yet been theoretically analyzed in detail anywhere. Although
selected precedents for contemporary motion graphics can already be
found in the 1950s and 1960s in the works by Saul Bass and Pablo
Ferro, its exponential growth from the middle of the 1990s is directly
related to the adoption of software for moving image design—
specifically, After Effects software released by Adobe in 1993. Deep
remixability is central to the aesthetics of motion graphics. That is,
the larger proportion of motion graphics projects done today around
the world derive their aesthetic effects from combining different
techniques and media traditions—animation, drawing, typography
photography, 3D graphics, video, etc.—in new ways. As a part of
my analysis, I look at how the typical software-based production
workflow in a contemporary design studio—the ways in which a
project moves from one software application to another—shapes the
aesthetics of motion graphics, and visual design in general.

The next major wave of computerization of culture has to do
with different types of software—social networks, social media

INTRODUCTION 47

sivices, and apps for mobile platforms. The wave of social
metworks and social media started slowly, erupted in 2005-2006

(Flickr, YouTube) and continues to movc.f()rward and expandl
s reach. The 1990s’ media revoluti(n} impacted professmﬁa
(reatives; the 2000s” media revolution affected the rest of us—i.e.
the hundreds of millions who use Faccbgok, T\,\"mer, l"ll‘Cf()?(,
Salari, Google Search and Maps, Flickr, Picasa, .\‘1meo, Blogger,
i numerous apps and services available on mobile platforms.

liccause we are still in the middle of social media diffusion, with
wme popular social media services going out of _tavoiam.i‘other;
paiming speed (for example, think of the. fate of I\.'IySpacc),:::\ind
the “social” functionality of software still gxpapdlr}g, I deci ev
that offering the detailed theoretical anal_y51s of this new wal\;e
would be premature. (This became glegr after 1 st.arted cdnfm}g} t E
part about social media which I ongmal_l_v had in the .ﬁrst 0.0
draft, and realized that some of the social media Sel'\"lCCS.I was
inalyzing in detail no longer exist... .) InsFead, I am fou_lks)ing’ 02
anl.n‘L', the fundamental dcvclopmeqts whlch'madc possi eban
shaped “digital media™ before its soc1.al explospn: the 1de§_s a ou;
the computer as a machine for medlg generation and_ e ltlﬂ% o
the 1960s-1970s, their implementanor) in thc med}a applica-
tions in the 1980s—1990s, and the transformation of visual media

ruages which quickly followed.

|""?:: 1bg::nore preqcise, we can frame this higtory between 1961 a'ng
1999. In 1961, Ivan Sutherland at MIT designed Sketchpad, v.vhlc
became the first computer design system shmyn to tf:e public. In
1999, After Effects 4.0 introduced Premiere import, Photpsho;}
5.5 added vector shapes,* and Apple showcq the ﬁ]{St version o
Final Cut Pro¥*—in short, the current paraqlgm (')f 1nteroperablci
media authoring and editing tools capable of creating professmn:j
media without special hardware beyond the f’)tf-the-shelf computer
was finalized. And while professional mcdla tools cpntmued t;)
evolve after this period, the changes so far have bee;n mcremen.t‘al;
Similarly, the languages of professional \"lSl’&] medla cre_atcd wit
this software did not change significantly after their radical trans-
formarion in the second part of the 1990s.

’ ikipedi: AkI/AF “ffects#History (July 7, 2011).

‘! hrtp:/fen.wikipedia.org/wiki/After_Effects# y (July 7 k.

z hnE://en.wikigedia.orgjwikiﬁ\dobe l